University of Colorado Boulder Math 2400, Midterm 3

Spring 2017

PRINT YOUR NAME: _____

PRINT INSTRUCTOR'S NAME: _____

SECTION #: _____

Question	Points	Score
1	13	
2	16	
3	8	
4	8	
5	15	
6	8	
7	16	
8	16	
Total:	100	

- No calculators, cell phones, or other electronic devices may be used at any time during the exam.
- Show all of your reasoning and work for full credit, unless indicated otherwise. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like $\ln(3)/2$ as is.
- For multiple choice questions, circle the correct answer.
- Notation: following the book, we use boldface to denote vectors, e.g., **a**, **b** are vectors.

- 1. (13 points) Short answer questions.
 - (a) (5 pts.) Let $R = [0, 2] \times [0, 2]$. Use a Riemann sum with m = n = 2 to estimate the value of $\iint_R x + y \ dA$. Take the sample points to be the lower left corners.

(b) (3 pts.) Let the density function of a lamina D be $\rho(x, y) = x^2 y$. Use a double integral to write a formula for the mass of the lamina D.

(c) (5 pts.) Let $\mathbf{F} = \langle x, y, z \rangle$, and C be a curve parameterized by $\mathbf{r}(t) = \langle t, e^t, \sin t \rangle$, $0 \leq t \leq 1$. Set up, but DO NOT evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$.

2. (16 points) (a) (8 pts.) Evaluate the double integral,

$$\iint_D x \ dA,$$

where,

$$D = \{(x, y) : 0 \le x \le 1, \ 2x^2 \le y \le 1 + x^2\}.$$

(b) (8 pts.) Evaluate the following double integral by changing the order of integration.

$$\int_0^1 \int_{2x}^2 e^{y^2} dy dx =$$

3. (8 points) Evaluate the triple intergral

$$\iiint_E y \ dV,$$

where E is the solid in the first octant bounded by the parabolic cylinder $y = x^2$ and the planes z = 2, and y = 1. 4. (8 points) Using spherical coordinates, set up an integral which finds the volume of the solid that lies within the sphere $x^2 + y^2 + z^2 = 25$, above the *xy*-plane, and below the cone $z = \sqrt{x^2 + y^2}$. DO NOT evaluate.

5. (15 points) Let a, b > 0. In the parts that follow, you will show that the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ has area πab by making the following change of variables

 $x = ar\cos\theta, \quad y = br\sin\theta.$

(a) (5 pts.) Compute the Jacobian of the transformation.

$$\frac{\partial(x,y)}{\partial(r,\theta)} =$$

(b) (5 pts.) Under this change of variables, the ellipse is the image of a disk. Find the radius of that disk. (Hint: plug in the change of variables to the equation for the ellipse.)

(c) (5 pts.) Using parts (a) and (b), apply the change of variables formula for a double integral to compute the area of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1.$$

- 6. (8 points) Match the vector field with the equation describing the vector field. No justification is needed.
 - 1. Vector Field 1: _____

3	P	~	~	~	Ň	X	X	X	Ň	ł	Ť	1	1	1	1	1	1	1	1	5
	F	~	~	~	Ń	×	X	X	N.	f	1	1	1	1	1	1	1	1	-	-
2	F	~	~	~	~	×	×	X	A.	1	1	1	1	1	1	1	~	~	~	-1
-	1	1	1	1	~	×	×	×	×	ł	1	1	1	1	1	1	~	~	~	-
	1	1	1	*	*	Υ.	×	×	*	•	4	1	*	*	*	*	~	~	~	-
1	F	4	4	*		Ψ.	¥	*	*	k.	4	1	*	*	*	*	*	-	-	-
-	F	ł	4	*	*	*	•		•	•	4	*	*	-	*	*	-	-	-	-
	F	4	4	4	*	*	-	-	-	•	· ·	*		٣	*	*	+	-	-	
0	E	+	+	+	+	*	-	-	-	•	•	•	٠	۲	٠	٠	*	+	+	-
0	F	+	+	+	+	-	-	-	-	·	·	•	•	•	٠	*	+	→	→	-
	F	+	+	*	*	*	-	-	-	,	•	•	*	•	٠	*	+	+	+	-
-1	F.	+	*	*	*	*			*	,	٩.	•	*	*	*	*	*	+	+	-
-1	-	-	*	*	*	*	*	*	*	*	٩.	•	•	*	*	*	*	+	+	-
	۲	-	-	*	*	*	×	*	¥	۲	1	۲	*	*	*	*	1	1	+	7
-2	٢.	-	~	~	*	*	*	×	¥	*	•	۲	×	×	×	1	1	1	1	
-2	-	-		~	~	×	*	1	1	ŧ	•	X	X	×	1	~	1	~	1	
	٢				1	1	1	1	1	ŧ	1	N	X	X	1	~	~	~	1	1
-3	5		1		1	1	1	1	1	ł	l f	. X.	X	X	X	>	\geq	2	>	2
	-3 -2		-1				0			1	2				3					

I.)
$$F(x, y) = (2-x)i + (3-y)j$$

2. Vector Field 2: _____

3		11	1	7	1	Ţ	t	1	Î	T	ţ	1	7	1	1	1	1
~			1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2			*	*	1	4	Å	Å	Å	Å	4		*	×		-	
1	$ \rightarrow \rightarrow$		* *	-	*	1	4	1		4	1	*	* •	* *	+	+ +	1 1
-	$\Rightarrow \Rightarrow$	\rightarrow \rightarrow \rightarrow	*	-		÷				÷	÷	:		*	≁ ≯	≁ →	\rightarrow
0	$\rightarrow \rightarrow$	→ → → →	*	•	-		•	•	. .	•	•			*	÷	⇒	→ +
	\rightarrow	→ → → →	-	-	•	•	·	·	ŀ	÷	•	·	-	-	+	-	→ -
-1	$\rightarrow \rightarrow$		÷	-	-							-	-	÷	+	-	11
2			-	*	1	1	i	i	i	i	1	1	*	*		-	
-2			1	1	4	1	ł	ŧ		ł	4	4	4	1	1	7	1
-3		///	1	7	1	1	<u>_ [</u>	1	L [<u> </u>	ſ	<u> </u>	<u>_7</u>	7	2	2	12
	-3	-2			-1			(0			1			2		3

II.)
$$\mathbf{F}(x, y) = y\mathbf{i} + x\mathbf{j}$$

3. Vector Field 3:

III.) $\mathbf{F}(x,y) = x^2 \mathbf{i} + y^2 \mathbf{j}$

IV.)
$$\mathbf{F}(x, y) = x\mathbf{i} + y\mathbf{j}$$

4. Vector Field 4:

- 7. (16 points) Let C be the curve traced out by traversing the upper half of a circle of radius 3 counterclockwise from (3,0) and then traveling along the line segment from the point (-3,0) to the point (3,0).
 - (a) (8 pts.) Find a parametrization for C. You may divide C into multiple segments.

(b) (8 pts.) Calculate $\int_C y \, ds$.

- 8. (16 points) Let S be the surface of the solid obtained by taking a section of the cylinder $x^2 + y^2 = 1$ between the planes z = 2 y and z = 0.
 - (a) (6 pts.) The upper face of S, the part lying in the plane z = 2 y, may be parametrized by $\mathbf{r}(x,y) = \langle x, y, 2 y \rangle$, where $(x,y) \in \{(x,y) : x^2 + y^2 \leq 1\}$. Compute the surface area of that portion of the surface S.

(b) (6 pts.) The portion of the surface S lying on the cylinder $x^2 + y^2 = 1$ may be parametrized by $\mathbf{r}(\theta, z) = \langle \cos(\theta), \sin(\theta), z \rangle$. Find the bounds for θ and z and then calculate the surface area of that portion of S.

(c) (4 pts.) What is the total surface area of S?