- 1. (10 points) Short answer questions.
 - (a) (3 pts) True False (choose one, you do not have to justify it) The following parametrizes a cylinder $\{x^2 + y^2 = 4\}$

$$x = 2\cos\theta, \quad y = 2\sin\theta, \quad z = z.$$

$$x^{2} + y^{3} = 4\cos^{2}\theta + 4\sin^{2}\theta = 4$$

(b) (3 pts) Let $f(x, y, z) = z^2 - x^2 - y^2$. Which type of quadric surface is the level surface of f at k = 0?

$$z^{2}-x^{2}-y^{2}=k=0$$

 $z^{2}=x^{2}+y^{2}$
[CONC]

(c) (4 pts) Complete the sentence (you do not have to justify it): Let z = f(x,y), then the maximum rate of change of f is given in the direction of $\frac{\nabla f}{\text{gradient vector}}$, and the rate of change is $\frac{|\nabla f|}{|\nabla f|}$ (the magnifude of the gradient vector)

2. (12 points) (a) Find the length of the curve $\mathbf{r}(t) = \langle 2t, t^2, \frac{1}{3}t^3 \rangle$ from t = 0 to t = 1.

$$\vec{r}'(t) = \langle 2, 2t, t^2 \rangle$$

$$|\vec{r}'(t)| = \sqrt{4 + 4t^2 + t^4} = \sqrt{(1 + t^2)^2} = 2 + t^2$$

$$\int_{0}^{1} |\vec{r}'(t)| dt = \int_{0}^{1} 2t^{2} dt = 2t + \frac{1}{3}t^{3} \Big|_{0}^{1} = 2\frac{1}{3} = \frac{7}{3}$$

(b) Now, let $\mathbf{r}(t)$ be any other curve that you know is parametrized with respect to arc length. What is the length of $\mathbf{r}(t)$ from t=a to $t=b,\,0\leq a< b$? (The curve is parametrized with respect to the arc length starting from t=0 in the direction of increasing t.)

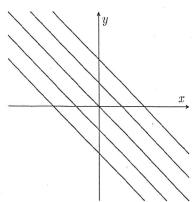
Since $\vec{r}(t)$ is parametrized with respect to arclength, then we know $|\vec{r}'(t)| = 1$.

Therefore,

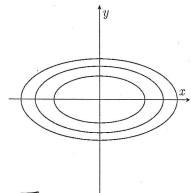
$$\int_{a}^{b} |\vec{r}'(t)| dt = \int_{a}^{b} |dt| = t |_{a}^{b} = b-a$$

9
3 (8 points) Match each contour map with a function from the choices on the right.

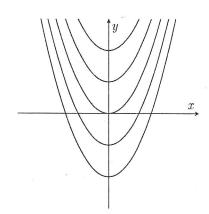
1. D



2. _B



3. F



A.
$$f(x, y) = x - y$$

$$x-y=k$$

$$x-k=y$$

B.
$$f(x,y) = \frac{x^2}{4} + y^2$$

$$\frac{x^2}{4} + y^2 = k$$

C.
$$f(x,y) = x - y^2$$

D.
$$f(x,y) = x + y$$

 $\times + \mathcal{G} = \mathcal{K}$
 $\mathcal{G} = \mathcal{K} - \mathcal{X}$

E.
$$f(x,y) = x^2 + y^2$$

F.
$$f(x,y) = y - x^2$$

4. (12 points) Demonstrate that the following limit does not exist.

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + y^2}$$

Let
$$\mathcal{J}_{i}^{o}: \mathbb{R} \longrightarrow \mathbb{R}^{2}$$

$$t \longmapsto (t, t^{2})$$
and let
$$\mathcal{J}_{2}^{o}: \mathbb{R} \longrightarrow \mathbb{R}^{2}$$

$$t \longmapsto (t_{i} - t^{i})$$

hun on It? hu limit hecomes

$$\lim_{t\to 0} \frac{t^{2}}{2t^{4}} = \frac{1}{2}$$

and on $\sqrt{2}$ the limit becomes $\lim_{t\to 0} \frac{-t^4}{2t^4} = -\frac{1}{2}$

5. (10 points) Find an equation of the tangent plane to the hyperbolic paraboloid

$$z = x^2 - y^2$$
 at the point $P(1, 1, 0)$.

$$Z - Z_0 = \int_X (x_0, y_0)(x - x_0) + \int_Y (x_0, y_0)(y - y_0)$$

$$f_{x} = 2x |_{(1,1,0)} = 2$$

Solotion 2

$$\nabla F|_{(1,1,0)} = \langle 2x, -24, -17 \rangle = \langle 2, -25|7 \rangle$$

Plane

$$2(x-1)-2(y-1)-Z=0$$

- 6. (12 points) Suppose w = f(x, y), where x = x(s, t) and y = y(s, t).
 - (a) Write out the chain rule for w. That is, find expressions for $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$. You do not need to show any work.

$$\frac{\partial w}{\partial x} = \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial y}{\partial w} \frac{\partial x}{\partial y}$$

(b) Using your answer from part (a), find an expression for
$$\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial t} \left(\frac{\partial w}{\partial t} \right)$$
.

$$\frac{\partial^2 \omega}{\partial t^2} = \frac{\partial}{\partial t} \left(\frac{\partial \omega}{\partial t} \right) = \frac{\partial}{\partial t} \left(\frac{\partial \omega}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial \omega}{\partial y} \frac{\partial y}{\partial t} \right)$$

$$= \frac{\partial}{\partial t} \left(\frac{\partial \omega}{\partial x} \right) \cdot \frac{\partial x}{\partial t} + \frac{\partial \omega}{\partial x} \frac{\partial^2 x}{\partial t^2} + \frac{\partial}{\partial t} \left(\frac{\partial \omega}{\partial y} \right) \cdot \frac{\partial y}{\partial t}$$

$$+ \frac{\partial \omega}{\partial y} \frac{\partial^2 y}{\partial t^2}$$

$$+ \frac{\partial \omega}{\partial x} \frac{\partial^2 y}{\partial t^2} + \frac{\partial}{\partial y} \left(\frac{\partial \omega}{\partial x} \right) \frac{\partial y}{\partial t} + \frac{\partial}{\partial y} \left(\frac{\partial \omega}{\partial x} \right) \frac{\partial y}{\partial t}$$

$$\frac{\partial^2 \omega}{\partial t^2} = \frac{\partial^2 \omega}{\partial x^2} \frac{\partial x}{\partial t} + \frac{\partial^2 \omega}{\partial y \partial x} \frac{\partial y}{\partial t} + \frac{\partial}{\partial x} \frac{\partial^2 x}{\partial t} + \frac{\partial}{\partial x} \frac{\partial^2 x}{\partial t}$$

$$\frac{\partial^2 \omega}{\partial t^2} = \frac{\partial^2 \omega}{\partial x^2} \frac{\partial x}{\partial t} + \frac{\partial^2 \omega}{\partial y \partial x} \frac{\partial y}{\partial t} + \frac{\partial^2 \omega}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial^2 \omega}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial^2 \omega}{\partial y} \frac{\partial x}{\partial t} + \frac{\partial \omega}{\partial y} \frac{\partial x}{\partial t} + \frac{$$

$$f(x,y) = e^x \sin(y).$$

(a) Find the gradient of f at any point (x, y).

(b) Find the gradient of f at the point (1,0).

$$\nabla f(1,0) = \langle 0,e \rangle = e\vec{j}$$

(c) Find the rate of change of f at the point (1,0) in the direction of the vector

$$\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}.$$

Recell

50

- 8. (12 points) Let $f(x,y) = 10 x^2 y^2 x$.
 - (a) Find all the **local** maxima and minima of f(x, y), and saddle points if any. Give both location and value.

$$f_x = -2x-1$$
, $f_y = -2y$
 $f_x = f_y = 0$ (=> $x = -\frac{1}{2} & y = 0$
 $f_{xx} = -2$, $f_{yy} = -2 & f_{xy} = 0$
So $D(x,y) = 4 > 0 & f_{xx} = 0$
So at $(-\frac{1}{2},0)$ $f(x,y)$ has
a max value of $f(-\frac{1}{2},0) = \frac{41}{4}$

(b) Restrict f to the closed region $D = \{(x,y) | x^2 + y^2 \le 9\}$. What are the **absolute** (global) maximum and minimum of f(x,y) over D? Give both location and value.

Can rewrite D as
$$D = \{Cx,y\} = 1 - 3 \le x \le 3$$
, $y = \pm \sqrt{9 - x^2}\}$
Let $g(x) = f(x, y) = \pm \sqrt{9 - x^2}$ alphanexis $= 1 - x$

were
$$g(x)$$
 has no CHT Pts. So Min for $g(x)$ at $x=3$ $x=3$

50
$$f(-3,0) = \frac{41}{4}$$
 & $f(3,0) = -2$, & from Part (a),
 $f(-\frac{1}{2},0) = \frac{41}{4}$ So global max 13 $\frac{41}{4}$ & global
MM B - 2.

9. (12 points) Use Lagrange multipliers to find the maximum and minimum values of the function

$$f(x,y,z)=12x-6z$$
 subject to the constraint $x^2-8y^2+z^2=5$.
$$\mathcal{G}=x^2-8\gamma^2+2^2$$

$$\nabla f = \langle 12, 0, -6 \rangle$$

 $\nabla g = \langle 2 \times, -16 \times, 2 \rangle$
 $\langle 12, 0, -6 \rangle = 2 \langle 2 \times, -16 \times, 2 \rangle$

$$5 = x^{2} + 8772^{2} = \left(\frac{6}{2}\right)^{2} + 0 + \left(\frac{-3}{2}\right)^{2} = \frac{36}{2^{2}} + \frac{9}{2^{2}}$$

$$\Rightarrow \lambda^2 = \frac{45}{5} = 9 \Rightarrow \lambda = \pm 3$$

$$\frac{2^{-3}}{2^{-3}}$$
: $x = 2$
 $y = 0$
 $y = 0$

$$\chi = -3$$
; $\chi = -2$
 $\chi = 0$ \Rightarrow $f(-1,0,1) = 12(-2) - 6(1) = -30$
 $\chi = -3$