MATH 2400: CALCULUS 3

5:15 - 6:45 pm, Mon. Sep. 21, 2015

MIDTERM 1

I have neither given nor received aid on this exam.
Name:

Check one below !

001 BULIN (9AM)	\bigcirc 006 Preston(2pm)
О 002 Моlсно(10ам)	007 Preston(3pm)
003 IH(11AM)	О 008 Сннау(9ам)
004 Spina(12pm)	\bigcirc 009 Walter(11am)
005 Spina(1pm)	

If you have a question raise your hand and remain seated. In order to receive full credit your answer must be **complete**, **logical**, **legible**, and **correct**. Show all of your work, and give adequate explanations. No shown work even with the correct final answer, no points ! Only one answer to each problem ! In case of two different answers to one problem, the lower score will be chosen !

DO NOT WRITE IN THIS BOX!			
Problem	Points	Score	
1	17 pts		
2	17 pts		
3	16 pts		
4	17 pts		
5	16 pts		
6	17 pts		
TOTAL	100 pts		

- 1. (17 points) Let P_0 be the point (1,1,2) and let \wp be the plane given by the equation 2x y + 2z = 2
 - (a) (9 points) Find parametric equations of the line L passing through the point P_0 and perpendicular to the plane \wp .

(b) (8 points) Find the intersection point of the line L in (a) above and the plane φ .

2. (17 points) Consider the surface S given by the equation

$$z = 3\sqrt{x^2 + y^2}.$$

(a) (10 points) Sketch the intersections of the surface S with each of the five planes

(a) x = 0; (b) y = 0; (c) z = 0; (d) z = 1; (e) z = 3.

What does each of these intersections look like roughly on each plane ?

(b) (7 points) Write down the equation of the cone with apex at (0, 0, 0), which is symmetric about the z-axis and which intersects the plane given by the equation z = 1 at a circle of radius 2.

3. (16 points) Which of the following is the angle between the (big) diagonal of a unit cube and one of its edges, where the diagonal and the edge start at the same point ? (Circle one of them and justify your answer. Show all work for full credit.)

(a)
$$\arcsin \frac{1}{\sqrt{3}}$$
 (b) $\arccos \frac{1}{\sqrt{3}}$ (c) $\arcsin \frac{2}{\sqrt{6}}$ (d) $\arccos \frac{2}{\sqrt{6}}$

- 4. (17 points) Let C be the helix $\mathbf{r}(t) = \langle \sin(\pi t), \cos(\pi t), t \rangle$ and let S be the sphere $x^2 + y^2 + z^2 = 5$.
 - (a) (8 points) At what points do the helix C intersect the sphere S?

(b) (9 points) Find the tangent line to the helix C at the intersection point having positive z-coordinate.

5. (16 points)

(a) (8 points) Find the spherical coordinates of the point given by $(1, 1, -\sqrt{2})$ in rectangular coordinates.

(b) (8 points) In Cartesian coordinates, write down the equation of the surface given by the equation $r = 2\cos\theta$ in cylindrical coordinates and describe the surface in words or in a picture.

- 6. (17 points) Let C be the curve given by $\mathbf{r}(t) = \langle 2t, \ln t, t^2 \rangle$, where \ln stands for the natural logarithm.
 - (a) (9 points) Find the arc length of the curve C for $1 \le t \le 4$.

(b) (8 points) Find the curvature of the curve C at t = 1.