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1. (15 points) Find the length of the curve r(t) = 〈2t3/2, cos(2t), sin(2t)〉, 0 ≤ t ≤ 1.

Solution
First, we need the derivative:

r′(t) = 〈3t1/2,−2 sin(2t), 2 cos(2t)〉.

Next, we integrate the magnitude:

L =

∫ 1

0

|r′(t)| dt,

=

∫ 1

0

√
9t+ 4 sin2(2t) + 4 cos2(2t) dt,

=

∫ 1

0

√
9t+ 4 dt,

=

[
2

27
(9t+ 4)3/2

]1
0

,

=
2

27

(
(13)3/2 − 43/2

)
.
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2. (10 points) (a) Let C be the curve in the xz-plane given by z = 1
x , 2 ≤ x ≤ 5. Find parametric

equations for the surface S obtained by rotating the curve C around the z-axis.

One possible solution
Let

x = u cos(v),

y = u sin(v),

z =
1

u
,

where u ∈ [2, 5] and v ∈ [0, 2π].

(b) Find parametric equations of the upper half of the sphere centered at (0, 0, 1) and with radius
R = 3.

One possible solution
Let

x = 3 cos(u) sin(v),

y = 3 sin(u) sin(v),

z = 3 cos(v) + 1,

where u ∈ [0, 2π] and v ∈ [0, π2 ].
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3. (20 points) Let z = f(x, y) = e−(x
2+y2) model a mountain.

(a) If a hiker standing at ( 1
2 ,

1
3 ) wishes to descend as quickly as possible, in what direction must she

walk?

Solution

The gradient of f will point in the direction of quickest increase, so we want

−∇f = 〈2xe−(x
2+y2), 2ye−(x

2+y2)〉

evaluated at ( 1
2 ,

1
3 ): 〈

e−(
1
4+

1
9 ),

2

3
e−(

1
4+

1
9 )

〉
.

(b) How steep is the slope from ( 1
2 ,

1
3 ) in the direction of u = 〈

√
2
2 ,
√
2
2 〉. This means that you have to

find the directional derivative z = f(x, y) in the u direction.

Solution
We may use the gradient to calculate the directional derivative:

Duf = ∇f · u =
5
√

2

6
e−(

1
4+

1
9 ).

(c) Find an equation of the tangent plane to z = f(x, y) = e−(x
2+y2) at the point ( 1

2 ,
1
3 ) where the

hiker is standing.

Solution
We may represent the surface as the level curve

F (x, y, z) = e−(x
2+y2) − z = 0.

The gradient of F evaluated at ( 1
2 ,

1
3 , e
−( 1

4+
1
9 )) is the normal vector for the tangent plane:

∇F =

〈
e−(

1
4+

1
9 ),

2

3
e−(

1
4+

1
9 ),−1

〉
.

An equation for the plane is therefore

e−(
1
4+

1
9 )

(
x− 1

2

)
+

2

3
e−(

1
4+

1
9 )

(
y − 1

3

)
−
(
z − e−( 1

4+
1
9 )
)

= 0.
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4. (20 points) (a) Determine whether the following limit exists. If the limit exists, find it. Explain your
answer.

lim
(x,y)→(0,0)

(
xy

x2 − 2y3

)
Solution
Using polar coordinates, we see that

lim
(x,y)→(0,0)

(
xy

x2 − 2y3

)
= lim
r→0

(
r2 cos(θ) sin(θ)

r2 cos2(θ)− 2r3 sin3(θ)

)
,

= lim
r→0

(
cos(θ) sin(θ)

cos2(θ)− 2r sin3(θ)

)
,

= tan(θ).

The limit depends on θ and therefore does not exist.

(b) Is the following function continuous at (0, 0)? Use limits to explain your answer.

f(x, y) =

{
sin(x2+y2)
x2+y2 if (x, y) 6= (0, 0),

1 if (x, y) = (0, 0),

Solution
The function is continuous at (0, 0) if

lim
(x,y)→(0,0)

f(x, y) = f(0, 0).

Again using polar coordinates, we have

lim
(x,y)→(0,0)

f(x, y) = lim
r→0

sin(r2)

r2
,

= lim
r→0

2r cos(r2)

2r
, by L’Hôpital’s Rule

= lim
r→0

cos(r2) = 1.
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(c) Calculate dz
dt at t = π for z = f(x, y) = x2 − xy − 4y2, x(t) = cos(2t), y(t) = sin(2t).

Solution
First, note that when t = π, x = 1 and y = 0. The chain rule tells us that

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
,

= (2x(t)− y(t)) · (−2 sin(2t)) + (−x(t)− 8y(t)) · (2 cos(2t)),

= 0 + (−1− 0) · 2,
= −2.

(d) Calculate ∂z
∂u for z = f(x, y) = ln( x

y+1 ), x(u, v) = uv, y(u, v) = u
v .

Solution

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
,

=
1

x(u, v)
· v +

−1

y(u, v) + 1
· 1

v
,

=
1

u
− 1

u+ v
.
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5. (20 points) Consider the surface given by the equation

x2 − y2 + z2 = 4.

(a) Find a vector normal to the surface at (−1, 1, 2).

Solution
Because the surface is a level surface:

f(x, y, z) = x2 − y2 + z2 = 4,

the gradient vector suffices:
∇f = 〈2x,−2y, 2z〉.

Evaluating at (−1, 1, 2), we have our normal vector:

〈−2,−2, 4〉.

(b) Find an equation for the tangent plane to the surface at (−1, 1, 2).

Solution
We use the normal vector previously calculated:

−2(x+ 1)− 2(y − 1) + 4(z − 2) = 0.
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6. (15 points) Consider the function f(x, y) = x3 + y2 − 3x− 2y.

(a) Find and classify all critical points for the function

Solution
First, the relevant partial derivatives:

fx(x, y) = 3x2−3, fy(x, y) = 2y−2, fxx(x, y) = 6x, fyy(x, y) = 2, fxy(x, y) = fyx(x, y) = 0.

Next, the determinant:
D(x, y) = fxxfyy − f2xy = 12x.

Now we find our critical points. The condition that fy = 0 implies

y = 1.

The condition that fx = 0 implies
x = ±1.

Thus, we need to classify two points: (−1, 1) and (1, 1). Evaluating D:

D(−1, 1) = −12 < 0, D(1, 1) = 12 > 0,

and so (−1, 1) is a saddle point. To complete the classification of (1, 1), we check the sign of fxx:

fxx(1, 1) = 6 > 0,

and so (1, 1) is a minimum.
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(b) Find the absolute maximum and minimum of f(x, y) in the rectangle with vertices (0, 0), (0, 1),
(1, 1), (1, 0).

Solution
We must check the value of f at the corners of the box, check for extrema on the boundary, and
finally check for local extrema in the center.

f(x, 0) = x3 − 3x, f ′(x, 0) = 3x2 − 3,

f(x, 1) = x3 − 3x− 1, f ′(x, 1) = 3x2 − 3,

f(0, y) = y2 − 2y, f ′(0, y) = 2y − 2,

f(1, y) = −2 + y2 − 2y, f ′(1, y) = 2y − 2.

The list of values we must check is therefore (0, 0), (0, 1), (1, 1), (1, 0). As

f(0, 0) = 0,

f(1, 0) = −2,

f(1, 1) = −3,

f(0, 1) = −1,

we conclude that the maximum is 0 at (0, 0) and the minimum is −3 at (1, 1).
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