MATH 2400: Calculus III, Fall 2013 MIDTERM #3

November 13, 2013

YOUR NAME:

Circle Your CORRECT Section

001	E. ANGEL $\dots \dots \dots$
002	E. Angel
003	A. NITA(11AM)
004	K. Selker (12pm)
005	I. MISHEV (1PM)
006	C. Farsi(2pm)
007	R. Rosenbaum (3pm)
008	S. Henry(9AM)

Important note: SHOW ALL WORK. BOX YOUR ANSWERS. Calculators are not allowed. No books, notes, etc. Throughout this exam, please provide exact answers where possible. That is: if the answer is 1/2, do not write 0.499 or something of that sort; if the answer is π , do not write 3.14159.

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
TOTAL	100	

"On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work."

SIGNATURE:

1. (25 points) Let W be the three-dimensional solid that is bounded below by the cone $z = \sqrt{\frac{x^2 + y^2}{3}}$ and bounded above by the sphere $x^2 + y^2 + z^2 = 9$. Evaluate the following integral

 $\int \int \int_W e^{(x^2+y^2+z^2)^{3/2}} dx dy dz.$

2. (25 points) Use the change of variables s = y, $t = y - x^3$ to evaluate $\int \int_R x^2 dx dy$ over the region R bounded by y = 2, y = 8, $y = x^3$, and $y = x^3 + 8$.

3. Let

$$\vec{F}(x,y) = (3x)\vec{i} + (-3y)\vec{j}$$
.

(a) (15 points) Find a parametrization for the flow line of \vec{F} that passes through the point (1,3).

(b) (10 points) Write Cartesian equations for the flow lines of the vector field $\vec{F}(x, y)$. Cartesian equations are equations involving the standard calculus variables x and y, as well as constants.

4. Consider the vector field

$$\vec{F}(x,y) = 4 \left[(1+x^2y^2)xy^2 \right] \vec{i} + 4 \left[(1+x^2y^2)x^2y + 1 \right] \vec{j}$$

(a) (10 points) Let C be the segment of the hyperbola $y = \frac{1}{x}$ from (1,1) to (2,1/2). Evaluate the line integral

$$\int_C \vec{F} \cdot d\bar{r}$$

by parametrizing C. Do **not** use the Fundamental Theorem of Calculus for Line Integrals.

(b) (10 points) Show that \vec{F} is a conservative vector field by finding a potential function f for \vec{F} : this means finding a function f such that $\nabla f = \vec{F}$.

 $f(x,y) = \underline{\qquad}.$

(c) (5 points) Use the Fundamental Theorem of Calculus for Line Integrals to evaluate $\int_C \vec{F} \cdot d\vec{r}$, where C is the segment of the hyperbola $y = \frac{1}{x}$ from (1,1) to (2,1/2) given in part (a).