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By the definition of the partial derivatives we have
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Using the results of part (a), we have (f,(0,0)i 4 £,(0,0)5) - @ = - (%Z—l— %;) = %

The extreme value theorem does not apply to this problem as given, because the region restricting
the dimensions (z,y, z > 0) is not closed and bounded.

We want to minimize the cost function, which, after drawing a picture and labeling side lengths
x,y, and z is given by:

C(z,y,z) = bxy + 4oz + 2yz.
The constraint that the volume is 60 gives that zyz = 60, or, because none of the dimensions can

be 0,
60
z=—.
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Eliminating z from the cost equation gives

240 120
C(z,y) = bry + — + —.
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To find critical points we solve the system

120
C$:6y—x—:0@6yx2—120:0 — 2z? =40

240
Cy = 6x — y——()(:)ny —240 =0 < xzy? =40

Using substitution we have
zy? = 2z

0 = 2yaz? — xy?

0=2zy(2z —y) (and z # 0 # y)
0=2x—y
2r=y



Then setting C, = 0 gives 423 = 40, so = v/10. Then y = 2+/10. Finally,
60 30 3
r=——— = " = 3¥10.
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To see if this gives a local minimum we find D.
First some more derivatives: Cy, = %, Cyy = %, and Cyy = 6.
Then

240 480
D(V/10,2V10) = To sp 6= 24-24 — 36 = 540 > 0,

so the critical point is either a max or a min. Since f,,(+/10) = 24 > 0, this is a local min.
3. (a) By the multivariable chain rule,

_Ofdx  Ofdy o -

W) = G5+ g = V@) @@+ (7).

(b) Differentiating both sides with respect to ¢, and using part (a),
Vi(wy) - (' @)i+y(1)j) = 0.
This implies that V f(z,y) and x’(t)z—i— y/(t)f are perpendicular for all ¢.

4. We have critical points whenever V f = 0, that is, where simultaneously

fe(z,y) = 32° — 62 = 0, and
fy(@,y) =2y +10=0
Solving f, = 0 gives y = —5. Solving 322 — 62 = 0 gives ¢ = 0 or = 2. Thus we have two critical
points: (0,5) and (2,5).

To classify these points we use the second derivative test, a.k.a. the discriminant,

D(xay) = fxw(xay) ' fyy(xay) - (fwy(xvy))Q

First we compute

fzz = 6 — 6,
fyy =2, and
fwy =0

Plugging in gives:

D(0,5) = (—6)(2) — 0
= —12,
and D(2,5) = (6)(2) — 0
=12

Because D(0,5) < 0, the point (0,5) must be a saddle point. Because D(2,5) > 0, the point (2,5)
must be either a max or a min. We inspect f;,(2,5) =6 > 0, and conclude that (2,5) is a min.

5. (a) The slope of the steepest path up the hill at the point (5,10, 1150) is the magnitude of the gradient.

As
0z

oz
we get Vf(5,10) = (—20,—60). Thus ||V f(5,10)|| = +v/4000, which is the slope of the steepest
path up the hill.

0
— 4z and 2= —b6y,
dy



(b)

The gradient at (5,10) is perpendicular to the contour z = 1150. This means that any vector
perpendicular to V f(5,10) will be parallel to the contour. One such vector is (60, —20), and this
vector points in the clockwise direction of the contour. To make this a unit vector, we divide by

the magnitude of the vector, and
1

/4000

U= (60, —20)
is the desired unit vector.

The cone z = 8 — 1/3(x? + y?) opens downwards and has tip at (0,0,8). The sphere has radius
4 and is centered at (0,0,4). First we will find where the cone and the sphere intersect. We can
rewrite the equation of the cone as

z—4=4—/3(x?+y?)
and substituting this into the equation of the sphere
22+ y? 4+ (4 — /322 +y2))? = 16
2?4+ y® +16 — 8/3(22 + y2) + 3(z® + ¢°) = 16
4(2% +9) - 8V3y/22 + 42 =0
Va2 +2(V/22 +y2 —2v3) =0

which implies (z,y) = (0,0) and 22 + y? = 12 are solutions. By plugging these solutions into
either the equation for the sphere or cone, we see that the former solution occurs at z = 8 so that
the sphere and cone intersect at the single point (0,0, 8). The latter solution occurs at z = 2 so
that the sphere and cone intersect in a circle centered at the origin of radius 2v/3 in the z = 2
plane. A picture of the solid is shown below.

We will write a triple integral in Cartesian coordinates integrating with respect to z first, then y,
then z. As the circle of intersection occurs in the z = 2 plane, which is 2 units below the center of
the sphere, the lower hemisphere forms the lower boundary of the solid. In order to find a lower
limit of integration, we write the equation for the sphere as a function of x and y by solving for z:

22+ y? + (2 —4)2 =16
(z—4)2 =16 —2% — 32
z—4=24/16 — 22 — y?

and because the lower hemisphere is the lower boundary we consider only the solution

z—4=—-416 — 22 — y?
z2=4—+/16 — a2 — y?
Also, as the projection of the solid is the disk z? + y? < 12 in the xy-plane, the y-limits of

integration are given by y = —v/12 — 22 for the lower limit and y = v/12 — 22 and the z-limits of
integration are given by x = —2v/3 and z = 2/3.



Hence an integral describing the volume of the solid S is

Vi2—z? 8—1/3(x24y?)
/ / / av = / / / dz dy dz
=—2v3Jy=—v12—2% Jz=4—/16-22 42

(b) i. The region is given by

Y

T

ii. We evaluate by changing the order of integration. Since the top y bound is y = f , solving

for z in terms of y, we find that the top = bound is 2 = 1 — 3y?. Looking at the picture above
we see that the lower x bound is 0. Since y = % when x = 0 on the curve, the top y bound

is %, and looking at the picture above we find that the lower y bound is 0. Therefore we

can rewrite our integral as
% 1-3y 3
/ / e Y Y dady
0 0

Integrating with respect to x we get

1

1
V3 NE)
0 0

Now, either recognizing that 1 — 3y? is the derivative of —y® 4+ y or by u substitution with
u = —y3+ywe get
< 133, 1
€y+y‘f e (Bt



