
Second Midterm Solutions

October 28, 2013

1. (a) By the definition of the partial derivatives we have

fx(0, 0) = lim
h→0

f((0, 0) + h(1, 0)

h
= lim

h→0

f(h, 0)

h
= lim

h→0

√
|h · 0|+ h

h
= lim

h→0

h

h
= 1

and

fy(0, 0) = lim
h→0

f((0, 0) + h(0, 1)

h
= lim

h→0

f(0, h)

h
= lim

h→0

√
|0 · h|+ 0

h
= lim

h→0

0

h
= 0.

(b) Assuming h to be positive

f~u(0, 0) = lim
h→0

f(h/
√

2, h/
√

2)− f(0, 0)

h
= lim

h→0

√
h2/2 + h/

√
2

h
= lim

h→0

2h/
√

2

h
=

2√
2
.

(c) Using the results of part (a), we have (fx(0, 0)~i + fy(0, 0)~j) · ~u =~i · ( 1√
2
~i + 1√

2
~j) = 1√

2
.

2. (a) The extreme value theorem does not apply to this problem as given, because the region restricting
the dimensions (x, y, z > 0) is not closed and bounded.

(b) We want to minimize the cost function, which, after drawing a picture and labeling side lengths
x, y, and z is given by:

C(x, y, z) = 6xy + 4xz + 2yz.

The constraint that the volume is 60 gives that xyz = 60, or, because none of the dimensions can
be 0,

z =
60

xy
.

Eliminating z from the cost equation gives

C(x, y) = 6xy +
240

y
+

120

x
.

To find critical points we solve the system

Cx = 6y − 120

x2
= 0⇔ 6yx2 − 120 = 0 ⇐⇒ 2yx2 = 40

Cy = 6x− 240

y2
= 0⇔ 6xy2 − 240 = 0 ⇐⇒ xy2 = 40

Using substitution we have

xy2 = 2yx2

0 = 2yx2 − xy2

0 = xy(2x− y) (and x 6= 0 6= y)

0 = 2x− y

2x = y
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Then setting Cx = 0 gives 4x3 = 40, so x = 3
√

10. Then y = 2 3
√

10. Finally,

z =
60

2 3
√

10 3
√

10
=

30

10
2
3

= 3
3
√

10.

To see if this gives a local minimum we find D.

First some more derivatives: Cxx = 240
x3 , Cyy = 480

y3 , and Cxy = 6.

Then

D(
3
√

10, 2
3
√

10) =
240

10
· 480

20
− 36 = 24 · 24− 36 = 540 > 0,

so the critical point is either a max or a min. Since fxx( 3
√

10) = 24 > 0, this is a local min.

3. (a) By the multivariable chain rule,

h′(t) =
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
= ∇f(x, y) · (x′(t)~i + y′(t)~j ).

(b) Differentiating both sides with respect to t, and using part (a),

∇f(x, y) · (x′(t)~i + y′(t)~j ) = 0.

This implies that ∇f(x, y) and x′(t)~i + y′(t)~j are perpendicular for all t.

4. We have critical points whenever ∇f = 0, that is, where simultaneously

fx(x, y) = 3x2 − 6x = 0, and

fy(x, y) = 2y + 10 = 0

Solving fy = 0 gives y = −5. Solving 3x2 − 6x = 0 gives x = 0 or x = 2. Thus we have two critical
points: (0, 5) and (2, 5).

To classify these points we use the second derivative test, a.k.a. the discriminant,

D(x, y) = fxx(x, y) · fyy(x, y)− (fxy(x, y))2.

First we compute

fxx = 6x− 6,

fyy = 2, and

fxy = 0

Plugging in gives:

D(0, 5) = (−6)(2)− 0

= −12,

and D(2, 5) = (6)(2)− 0

= 12

Because D(0, 5) < 0, the point (0, 5) must be a saddle point. Because D(2, 5) > 0, the point (2, 5)
must be either a max or a min. We inspect fxx(2, 5) = 6 > 0, and conclude that (2, 5) is a min.

5. (a) The slope of the steepest path up the hill at the point (5, 10, 1150) is the magnitude of the gradient.
As

∂z

∂x
= −4x and

∂z

∂y
= −6y,

we get ∇f(5, 10) = 〈−20,−60〉. Thus ‖∇f(5, 10)‖ =
√

4000, which is the slope of the steepest
path up the hill.
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(b) The gradient at (5, 10) is perpendicular to the contour z = 1150. This means that any vector
perpendicular to ∇f(5, 10) will be parallel to the contour. One such vector is 〈60,−20〉, and this
vector points in the clockwise direction of the contour. To make this a unit vector, we divide by
the magnitude of the vector, and

~u =
1√

4000
〈60,−20〉

is the desired unit vector.

6. (a) The cone z = 8 −
√

3(x2 + y2) opens downwards and has tip at (0, 0, 8). The sphere has radius
4 and is centered at (0, 0, 4). First we will find where the cone and the sphere intersect. We can
rewrite the equation of the cone as

z − 4 = 4−
√

3(x2 + y2)

and substituting this into the equation of the sphere

x2 + y2 + (4−
√

3(x2 + y2))2 = 16

x2 + y2 + 16− 8
√

3(x2 + y2) + 3(x2 + y2) = 16

4(x2 + y2)− 8
√

3
√

x2 + y2 = 0√
x2 + y2(

√
x2 + y2 − 2

√
3) = 0

which implies (x, y) = (0, 0) and x2 + y2 = 12 are solutions. By plugging these solutions into
either the equation for the sphere or cone, we see that the former solution occurs at z = 8 so that
the sphere and cone intersect at the single point (0, 0, 8). The latter solution occurs at z = 2 so
that the sphere and cone intersect in a circle centered at the origin of radius 2

√
3 in the z = 2

plane. A picture of the solid is shown below.

We will write a triple integral in Cartesian coordinates integrating with respect to z first, then y,
then x. As the circle of intersection occurs in the z = 2 plane, which is 2 units below the center of
the sphere, the lower hemisphere forms the lower boundary of the solid. In order to find a lower
limit of integration, we write the equation for the sphere as a function of x and y by solving for z:

x2 + y2 + (z − 4)2 = 16

(z − 4)2 = 16− x2 − y2

z − 4 = ±
√

16− x2 − y2

and because the lower hemisphere is the lower boundary we consider only the solution

z − 4 = −
√

16− x2 − y2

z = 4−
√

16− x2 − y2

Also, as the projection of the solid is the disk x2 + y2 ≤ 12 in the xy-plane, the y-limits of
integration are given by y = −

√
12− x2 for the lower limit and y =

√
12− x2 and the x-limits of

integration are given by x = −2
√

3 and x = 2
√

3.
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Hence an integral describing the volume of the solid S is

V =

∫∫∫
S

dV =

∫ 2
√
3

x=−2
√
3

∫ √12−x2

y=−
√
12−x2

∫ 8−
√

3(x2+y2)

z=4−
√

16−x2−y2

dz dy dx

(b) i. The region is given by

x

y

y =
√
1−x√
3

ii. We evaluate by changing the order of integration. Since the top y bound is y =
√
1−x√
3

, solving

for x in terms of y, we find that the top x bound is x = 1−3y2. Looking at the picture above
we see that the lower x bound is 0. Since y = 1√

3
when x = 0 on the curve, the top y bound

is 1√
3
, and looking at the picture above we find that the lower y bound is 0. Therefore we

can rewrite our integral as ∫ 1√
3

0

∫ 1−3y2

0

e−y
3+y dxdy

Integrating with respect to x we get∫ 1√
3

0

xe−y
3+y|1−3y

2

0 dy =

∫ 1√
3

0

(1− 3y2)e−y
3+y dy

Now, either recognizing that 1 − 3y2 is the derivative of −y3 + y or by u substitution with
u = −y3 + y we get

e−y
3+y|

1√
3

0 = e
−( 1√

3
)3+ 1√

3 − 1
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