Name:

1. Let $\vec{\mathbf{F}}(x, y, z) = \langle x, y, xe^z \rangle$ and let S be the part of the cylinder $x^2 + y^2 = 1$ beneath the plane z = 2 and in the first octant, with positive orientation. Calculate $\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$.

2. Let $\vec{\mathbf{F}}(x, y, z) = \langle e^{\sin(y)}, xz + 2, \sin(y)x^2 + z \rangle$ and let S be the paraboloid $y = 1 - x^2 - z^2$ with $y \ge 0$, with positive orientation. Calculate $\iint_S \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$.

3. Let $\vec{\mathbf{F}}(x, y, z) = \langle ye^{xy} - zy, xe^{xy} - xz, -xy \rangle$ and let *C* be the intersection of the cylinder $z^2 + y^2 = 9$ and the paraboloid $x = y^2 + z^2$, oriented clockwise. Calculate $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$.

4. Let $\vec{\mathbf{F}}(x, y, z) = \langle y e^{xy} - yz, x e^{xy} - xz, 1 - xy \rangle$, and let *C* be the curve $\vec{r}(t) = \langle t \cos(t), t \sin(t), t \rangle$ with $0 \le t \le 2\pi$. Calculate $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$.

5. Let $\vec{\mathbf{F}}(x, y, z) = \langle x \cos(x), xy - z, e^z + y \rangle$ and let C be the lines connecting (1, 0, 0), (1, 1, 0), (1, 1, 1), and (1, 0, 1), oriented counterclockwise. Calculate $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}.$

6. Let $\vec{\mathbf{F}}(x, y, z) = \langle y + \cos(x), \cos(y)e^y, z^2 - x \rangle$ and let S be the surface of the region bounded by the parametric equations

$$\vec{\mathbf{r}}(u,v) = \langle \cos(u)(2+\sin(v)), \sin(u)(2+\sin(v)), \cos(v) \rangle$$

with $0 \leq u \leq \frac{\pi}{2}$ and $0 \leq v \leq 2\pi$ and the plane y = 0, positively oriented. Calculate $\iint_{S} \operatorname{curl} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$. 7. Evaluate $\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$ where $\vec{\mathbf{F}}(x, y, z) = \langle e^{y^2} + xy, y^2 + z, e^{x^2} - zy \rangle$ and where S is the positively-oriented boundary of the region bounded by and including the following sides: $z = 0, x = 1, y \ge 0, x = y^2$, and z - x = 1.

8. Evaluate $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$ where $\vec{\mathbf{F}}(x, y, z) = \langle \sin(x^2), yz - e^y, \sin(y^2) - x \rangle$ and C is the boundary (oriented counterclockwise) of the portion of the surface $x^2 + y^2 = 9$ (including z = 0) cut off at the plane y + z = 4.

9. Evaluate $\iint_{S} e^{z} dS$ where S is the positively-oriented surface given by $\vec{r}(u, v) = \langle \cos(u), \sin(u), \frac{uv}{2} \rangle$ with $0 \le u, v \le \pi$.

10. Evaluate $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$ where $\vec{\mathbf{F}}(x,y) = \langle \cos^2(x) - y^2 x, x^2 y + x - e^{y^2} \rangle$ and C is the path starting at (0,4), going down the *y*-axis to (0,-4), traveling counterclockwise along $x^2 + y^2 = 16$ to (4,0), then following y + x = 4 back to (0,4).

11. Evaluate $\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$ where $\vec{\mathbf{F}}(x, y, z) = \langle -z, e^{x^2}, y^2 \rangle$ and S is the positively-oriented surface formed by gluing together the cylinder $x^2 + y^2 = 9$ with $0 \le z \le 9$ with the elliptic paraboloid $5 + x^2 + y^2 = z$ with $5 \le z \le 9$ and the surface given by the parametrization $\vec{r}(u, v) = \langle u \cos(v), u \sin(v), 9 \rangle$ where $0 \le v \le 2\pi$ and $2 \le u \le 3$. 12. Evaluate $\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$ where $\vec{\mathbf{F}}(x, y, z) = \langle xe^{y^2}, y\sin(z), 2x - ze^{y^2} \rangle$ S is the surface in the first octant formed by the planes y = 0, x = 0, and x + y + z = 1 oriented outwards.

13. Evaluate $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$ where $\vec{\mathbf{F}}(x, y, z) = \langle ze^x, \sin(z), e^x + y\cos(z) \rangle$ and C is the curve given by $\vec{\mathbf{r}}(t) = \langle t^2\cos(t), t, t \rangle$ where $0 \le t \le 2\pi$.

14. Evaluate $\iint_{S} \operatorname{curl}(\vec{\mathbf{F}}) \cdot d\vec{\mathbf{S}}$ where $\vec{\mathbf{F}}(x, y, z) = \langle y, -x, z \rangle$ and S is the surface, oriented outwards, made of the half-cone $z = \sqrt{x^2 + y^2}$ with $0 \le z \le 1$ and the cylinder $x^2 + y^2 = 1$ where $1 \le z \le 4$.

15. Evaluate $\int_C x \, ds$ where C is the curve $y = x^2$ in the xy-plane from $0 \le x \le 1$.

16. Evaluate $\iint_{S} \operatorname{curl}(\vec{\mathbf{F}}) \cdot d\vec{\mathbf{S}}$ where $\vec{\mathbf{F}} = \langle \cos(e^{y^2 + z^2 + x^2}), e^{\sin(xy)}, \sin(\cos(\sin(\cos(\sin(xyz))))) \rangle$ and S is the surface of the sphere $x^2 + y^2 + z^2 = 4$ above and including the plane $z = \sqrt{3}$ oriented outward.