Final Practice
Name:

1. Let $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle x, y, x e^{z}\right\rangle$ and let S be the part of the cylinder $x^{2}+y^{2}=1$ beneath the plane $z=2$ and in the first octant, with positive orientation. Calculate $\iint_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$.
2. Let $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle e^{\sin (y)}, x z+2, \sin (y) x^{2}+z\right\rangle$ and let S be the paraboloid $y=$ $1-x^{2}-z^{2}$ with $y \geq 0$, with positive orientation. Calculate $\iint_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$.
3. Let $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle y e^{x y}-z y, x e^{x y}-x z,-x y\right\rangle$ and let C be the intersection of the cylinder $z^{2}+y^{2}=9$ and the paraboloid $x=y^{2}+z^{2}$, oriented clockwise. Calculate $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$.
4. Let $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle y e^{x y}-y z, x e^{x y}-x z, 1-x y\right\rangle$, and let C be the curve $\vec{r}(t)=$ $\langle t \cos (t), t \sin (t), t\rangle$ with $0 \leq t \leq 2 \pi$. Calculate $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$.
5. Let $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle x \cos (x), x y-z, e^{z}+y\right\rangle$ and let C be the lines connecting $(1,0,0),(1,1,0),(1,1,1)$, and $(1,0,1)$, oriented counterclockwise. Calculate $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$.
6. Let $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle y+\cos (x), \cos (y) e^{y}, z^{2}-x\right\rangle$ and let S be the surface of the region bounded by the parametric equations

$$
\overrightarrow{\mathbf{r}}(u, v)=\langle\cos (u)(2+\sin (v)), \sin (u)(2+\sin (v)), \cos (v)\rangle
$$

with $0 \leq u \leq \frac{\pi}{2}$ and $0 \leq v \leq 2 \pi$ and the plane $y=0$, positively oriented. Calculate $\iint_{S} \operatorname{curl} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$.
7. Evaluate $\iint_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$ where $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle e^{y^{2}}+x y, y^{2}+z, e^{x^{2}}-z y\right\rangle$ and where S is the positively-oriented boundary of the region bounded by and including the following sides: $z=0, x=1, y \geq 0, x=y^{2}$, and $z-x=1$.
8. Evaluate $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$ where $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle\sin \left(x^{2}\right), y z-e^{y}, \sin \left(y^{2}\right)-x\right\rangle$ and C is the boundary (oriented counterclockwise) of the portion of the surface $x^{2}+y^{2}=9$ (including $z=0$) cut off at the plane $y+z=4$.
9. Evaluate $\iint_{S} e^{z} d S$ where S is the positively-oriented surface given by $\vec{r}(u, v)=$ $\left\langle\cos (u), \sin (u), \frac{u v}{2}\right\rangle$ with $0 \leq u, v \leq \pi$.
10. Evaluate $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$ where $\overrightarrow{\mathbf{F}}(x, y)=\left\langle\cos ^{2}(x)-y^{2} x, x^{2} y+x-e^{y^{2}}\right\rangle$ and C is the path starting at $(0,4)$, going down the y-axis to $(0,-4)$, traveling counterclockwise along $x^{2}+y^{2}=16$ to $(4,0)$, then following $y+x=4$ back to $(0,4)$.
11. Evaluate $\iint_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$ where $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle-z, e^{x^{2}}, y^{2}\right\rangle$ and S is the positively-oriented surface formed by gluing together the cylinder $x^{2}+y^{2}=9$ with $0 \leq z \leq 9$ with the elliptic paraboloid $5+x^{2}+y^{2}=z$ with $5 \leq z \leq 9$ and the surface given by the parametrization $\vec{r}(u, v)=\langle u \cos (v), u \sin (v), 9\rangle$ where $0 \leq v \leq 2 \pi$ and $2 \leq u \leq 3$.
12. Evaluate $\iint_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$ where $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle x e^{y^{2}}, y \sin (z), 2 x-z e^{y^{2}}\right\rangle S$ is the surface in the first octant formed by the planes $y=0, x=0$, and $x+y+z=1$ oriented outwards.
13. Evaluate $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$ where $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle z e^{x}, \sin (z), e^{x}+y \cos (z)\right\rangle$ and C is the curve given by $\overrightarrow{\mathbf{r}}(t)=\left\langle t^{2} \cos (t), t, t\right\rangle$ where $0 \leq t \leq 2 \pi$.
14. Evaluate $\iint_{S} \operatorname{curl}(\overrightarrow{\mathbf{F}}) \cdot d \overrightarrow{\mathbf{S}}$ where $\overrightarrow{\mathbf{F}}(x, y, z)=\langle y,-x, z\rangle$ and S is the surface, oriented outwards, made of the half-cone $z=\sqrt{x^{2}+y^{2}}$ with $0 \leq z \leq 1$ and the cylinder $x^{2}+y^{2}=1$ where $1 \leq z \leq 4$.
15. Evaluate $\int_{C} x d s$ where C is the curve $y=x^{2}$ in the $x y$-plane from $0 \leq x \leq 1$.
16. Evaluate $\iint_{S} \operatorname{curl}(\overrightarrow{\mathbf{F}}) \cdot d \overrightarrow{\mathbf{S}}$ where $\overrightarrow{\mathbf{F}}=\left\langle\cos \left(e^{y^{2}+z^{2}+x^{2}}\right), e^{\sin (x y)}, \sin (\cos (\sin (\cos (\sin (x y z)))))\right\rangle$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=4$ above and including the plane $z=\sqrt{3}$ oriented outward.

