Review guide for §13.3 to §13.8

Exam date, time and room: Wednesday, December 18, 2019, 7:30 AM -10:00 AM at TBA

Exam info: http://math.colorado.edu/math2400/2400exams.php

For the other sections, please check out the previous 3 exam review guides.

1. Fundamental Theorem of Line Integrals (§13.3): If \vec{F} is conservative, then there exists f called a potential function of \vec{F} , such that $\vec{F} = \nabla f$, and

$$\int_C \vec{F} \cdot d\vec{r} = \int_C \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a)) = f(\text{terminal pt}) - f(\text{initial pt}) \text{ path independent}$$

To find the potential function f of a conservative vector field \vec{F} , we solve $\vec{F} = \text{grad } f = \nabla f$,

(a) In
$$\mathbb{R}^2$$
: $\vec{F}(x, y) = \langle P(x, y), Q(x, y) \rangle$, $\vec{F} = \nabla f \iff \langle P, Q \rangle = \langle f_x, f_y \rangle \iff \begin{cases} P = f_x \\ Q = f_y \end{cases}$
(b) In \mathbb{R}^3 : $\vec{F} = \langle P(x, y, z), Q(x, y, z).R(x, y, z) \rangle$, $\vec{F} = \nabla f \Leftrightarrow \langle P, Q, R \rangle = \langle f_x, f_y, f_z \rangle \Leftrightarrow \begin{cases} P = f_x \\ Q = f_y \\ R = f_z \end{cases}$

2. Green's Theorem (§12.4): If C is closed on a simple connected region D in \mathbb{R}^2 , and $\vec{F} = \langle P, Q \rangle$, then

$$\oint_C \vec{F} \cdot d\vec{r} = \pm \iint_D (Q_x - P_y) dA$$

where \pm sign is determined by the direction of C.

 $A(D) = \iint_{D} dA = \oint_{C} x \, dy = -\oint_{C} y \, dx = \frac{1}{2} \oint_{C} x \, dy - y \, dx$ the area of $D \subset \mathbb{R}$, C is the bdry of D oriented counter-clockwise

- 3. Curl and Divergence (§13.5):
 - (a) curl $\vec{F} = \nabla \times \vec{F}$: The curl of a vector field $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k} = \langle P, Q, R \rangle \in \mathbb{R}^3$ is defined by

$$\operatorname{curl} \vec{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}$$
$$\nabla = \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right).$$
$$\nabla \times \vec{F} = \left| \begin{array}{c} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array} \right| = \vec{i} \left| \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ Q & R \end{array} \right| - \vec{j} \left| \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ P & R \end{array} \right| + \vec{k} \left| \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{array} \right| = \operatorname{curl} \vec{F}$$

The curl of a vector field measures the tendency for the vector field to **swirl** around.

(b) div $\vec{F} = \nabla \cdot \vec{F}$: The divergence of a vector field $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k} = \langle P, Q, R \rangle \in \mathbb{R}^3$ is a function of 3 variables defined by div $\vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ if P_x , Q_y , R_z exist.

div \vec{F} — measures the **tendency** of the fluid to **diverge** from the point (*x*, *y*, *z*).

- (c) If $\vec{F} = \langle P, Q, R \rangle \in \mathbb{R}^3$, then $\operatorname{div} \vec{F} = \nabla \cdot \vec{F}$ is a scalar field, but curl $\vec{F} = \nabla \times \vec{F}$ is a vector field.
- (d) **Theorem:** If $\vec{F} = \langle P, Q, R \rangle \in \mathbb{R}^3$, and P, Q and R have continuous 2nd-order partial derivatives, then div (curl \vec{F}) = $\nabla \cdot (\nabla \times \vec{F}) = 0$.
- (e) **Theorem:** If f is scalar function of x, y and z, and has continuous 2nd-order partial derivatives, then $\operatorname{curl}(\operatorname{grad} f) = \nabla \times (\nabla f) = \vec{0}.$
- (f) **Theorem:** If \vec{F} is a vector field on \mathbb{R}^3 whose component functions have continuous partial derivatives and curl $\vec{F} = \vec{0}$, the \vec{F} is a conservative vector field.

(g) **Conservative vector field**: If $\vec{F} = \langle P, Q, R \rangle$, $P, Q, R \in C^1(\mathbb{R}^3)$, then

 \vec{F} is conservative \iff curl $\vec{F} = \nabla \times \vec{F} = \vec{0}$ \iff there exists a scalar function f such that $\nabla f = \vec{F}$

where *f* is called a **potential** function of \vec{F} . To find *f*, we solve $\nabla f = \vec{F} \Leftrightarrow f_x = P$, $f_y = Q$, $f_z = R$ for *f*.

(h) Laplace operator: $\nabla^2 = \nabla \cdot \nabla$ is called the Laplace operator.

div (grad f) = $\nabla \cdot (\nabla f) = f_{xx} + f_{yy} + f_{zz} \equiv \nabla^2 f$

- 4. Surface Integrals (§13.6): $S: \vec{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$ in \mathbb{R}^3 . $\iint_S f(x, y, z) \, \mathrm{d}S = \iint_D f\left(\vec{r}(u, v)\right) |\vec{r}_u \times \vec{r}_v| \, \mathrm{d}A, \quad \iint_S \vec{F} \cdot \mathrm{d}\vec{S} = \pm \iint_D \vec{F}\left(\vec{r}(u, v)\right) \cdot \left(\vec{r}_u \times \vec{r}_v\right) \, \mathrm{d}A.$
- 5. **Stokes' Theorem** (§13.7): *C* is the **boundary** of *S*. *C* & *S* are simple, connected, and smooth. curl $\vec{F} = \nabla \times \vec{F}$. $\oint_C \vec{F} \cdot d\vec{r} = \iint_S \text{curl } \vec{F} \cdot d\vec{S}, \text{ where the orientations of } C \text{ and } S \text{ follow the$ **right-hand rule** $.}$
- 7. Applications of line and surface integrals
 - (a) Mass and center of mass: In the formulas below, C: $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ in \mathbb{R}^3 . *D* is a general region in \mathbb{R}^2 . *S*: $\vec{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$ in \mathbb{R}^3 . $\rho(x, y, z)$ or $\rho(x, y)$ is the density of the object. Once we get the mass *m*, for example, the mass of the wire with density $\rho(x, y, z)$, is $(\bar{x}, \bar{y}, \bar{z})$, where $\bar{x} = \frac{1}{m} \int_C x \rho(x, y, z) \, ds$, $\bar{y} = \frac{1}{m} \int_C y \rho(x, y, z) \, ds$, $\bar{z} = \frac{1}{m} \int_C z \rho(x, y, z) \, ds$. The other center of mass is similar.

integral	related computations	the meaning of the integral
$\int_C \rho(x, y, z) \mathrm{d}s$	$m = \int_{t_0}^{t_1} \rho(\vec{r}(t)) \vec{r}'(t) \mathrm{d}t$	mass of a wire from $\vec{r}(t_0)$ to $\vec{r}(t_1)$ along curve <i>C</i> in \mathbb{R}^3 .
$\iint_D \rho(x, y) \mathrm{d}A$	$m = \int_{a}^{b} \int_{y=b(x)}^{y=t(x)} \rho(x, y) \mathrm{d}y \mathrm{d}x$	mass of a lamina <i>D</i> in \mathbb{R}^2
$\iint_{S} \rho(x, y, z) \mathrm{d}S$	$m = \iint_D \rho\left(\vec{r}(u,v)\right) \vec{r}_u \times \vec{r}_v \mathrm{d}A$	mass of the surface <i>S</i> in \mathbb{R}^3 The double integral can be set up in two different orders, or by polar co- ordinates.
$\iiint_E \rho(x, y, z) \mathrm{d}V$	$m = \iint_{D_{xy}} \int_{b(x,y)}^{t(x,y)} \rho(x,y,z) \mathrm{d}z \mathrm{d}A$	mass of the solid E in \mathbb{R}^3 The integral can be set up by 3 different plane regions, or by cylindrical/spherical coordinates.

(b) Integrals with 1 as integrand: In the formulas below, C: $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ in \mathbb{R}^3 . D is a general region in \mathbb{R}^2 . S: $\vec{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$ in \mathbb{R}^3 .

integral	related computations	the meaning of the integral
$\int_C \mathrm{d}s$	$L = \int_{t_0}^{t_1} \vec{r}'(t) \mathrm{d}t$	arc length from $\vec{r}(t_0)$ to $\vec{r}(t_1)$ along the curve <i>C</i>
$\iint_D \mathrm{d}A$	$A(D) = \int_C x dy = -\int_C y dx = \frac{1}{2} \int_C x dy - y dx$	area of the $D \subset \mathbb{R}^2$
$\iint_{S} \mathrm{d}S$	$A(S) = \iint_D \vec{r}_u \times \vec{r}_v \mathrm{d}A$	area of the surface $S \subset \mathbb{R}^3$
$\iiint_E \mathrm{d} V$	$V(E) = \iint_{D_{xy}} \int_{b(x,y)}^{t(x,y)} \mathrm{d}z \mathrm{d}A$	volume of the solid $E \subset \mathbb{R}^3$

(c)
$$\int_C \vec{F} \cdot d\vec{r} - \mathbf{work}$$
 done by force \vec{F} along the curve C . $\iint_S \vec{F} \cdot d\vec{S} - \mathbf{flux}$ through the surface S .

- 8. Summary on the 2nd type of line and surface integrals
 - (a) How to evaluate the 2nd type of the line integral? (§13.2, §13.3, §13.4)
 - i) **Direct method**: If we can parametrize the curve as *C*: $\vec{r} = \langle x(t), y(t), z(t) \rangle$, *t* from t_0 (initial time) to t_1 (terminal time), then $\int_C \vec{F} \cdot d\vec{r} = \int_{t_0}^{t_1} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$
 - ii) **FTLIs**: If \vec{F} is **conservative**, then there exists a potential function f such that $\nabla f = \vec{F}$, and the integral can be evaluated by the **Fundamental Theorem of Line Integrals**:

 $\int_{C} \vec{F} \cdot d\vec{r} = f(\text{terminal point}) - f(\text{initial point})$

- iii) By Green's Theorem (2D) or Stokes' Theorem (3D):
 - A. If *C* is closed on a simple connected region *D* in \mathbb{R}^2 , and $\vec{F} = \langle P, Q \rangle$, then

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_D (Q_x - P_y) dA,$$

where C is the boundary of D with orientation counter-clockwise.

B. If C is closed on a simple connected region D in \mathbb{R}^3 , and $\vec{F} = \langle P, QR \rangle$, then

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S \operatorname{curl} \vec{F} \cdot d\vec{S}$$

where C is the boundary of S. Their orientations follow the **the right-hand rule**.

- (b) How to evaluate the 2nd type of the surface integral? (§13.6, §13.7, §13.8)
 - i) **Direct method**: If we can parametrize the surface as $S: \vec{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$, and S is oriented with the same direction of $\vec{r}_u \times \vec{r}_v$, then

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D_{uv}} \vec{F}(\vec{r}(u,v)) \cdot (\vec{r}_{u} \times \vec{r}_{v}) dA.$$

- ii) Stokes' Theorem: If the integrand is curl $\vec{F} = \nabla \times \vec{F}$, or the curve *C* is the boundary of the surface S, $\iint_{S} \text{curl } \vec{F} \cdot d\vec{S} = \oint_{C} \vec{F} \cdot d\vec{r}$.
- iii) **Divergence Th**: If *S* is **closed**, $\iint_S \vec{F} \cdot d\vec{S} = \iiint_E \text{div } \vec{F} \, dV. S$ is the boundary of *E*.

9. Summary on Fundamental Theorem of Calculus (§13.9): See Page 973 on the summary of Fundamental Theorem of Calculus (FTC)

FTC
$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$

FTLIs $\int_{C} \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$

Green's Th
$$\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_C P \, dx + Q \, dy$$

Stokes' Th
$$\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S} = \oint_{C} \vec{F} \cdot d\vec{r}$$

Divergence Th $\iiint \operatorname{div} \vec{F} \, \mathrm{d}V = \oiint_{S} \vec{F} \cdot \mathrm{d}\vec{S}$

