Review guide for §13.3 to §13.8

Exam date, time and room: Wednesday, December 18, 2019, 7:30 AM -10:00 AM at TBA
Exam info: http://math.colorado.edu/math2400/2400exams.php
For the other sections, please check out the previous 3 exam review guides.

1. Fundamental Theorem of Line Integrals (§13.3): If \vec{F} is conservative, then there exists f called a potential function of \vec{F}, such that $\vec{F}=\nabla f$, and

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{C} \nabla f \cdot \mathrm{~d} \vec{r}=f(\vec{r}(b))-f(\vec{r}(a))=f(\text { terminal pt) }-f(\text { initial pt }) \quad \text { path independent }
$$

To find the potential function f of a conservative vector field \vec{F}, we solve $\vec{F}=\operatorname{grad} f=\nabla f$,
(a) In $\mathbb{R}^{2}: \vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle, \vec{F}=\nabla f \Longleftrightarrow\langle P, Q\rangle=\left\langle f_{x}, f_{y}\right\rangle \Longleftrightarrow\left\{\begin{array}{l}P=f_{x} \\ Q=f_{y}\end{array}\right.$
(b) In $\mathbb{R}^{3}: \vec{F}=\langle P(x, y, z), Q(x, y, z) \cdot R(x, y, z)\rangle, \vec{F}=\nabla f \Leftrightarrow\langle P, Q, R\rangle=\left\langle f_{x}, f_{y}, f_{z}\right\rangle \Leftrightarrow\left\{\begin{array}{l}P=f_{x} \\ Q=f_{y} \\ R=f_{z}\end{array}\right.$
2. Green's Theorem (§12.4): If C is closed on a simple connected region D in \mathbb{R}^{2}, and $\vec{F}=\langle P, Q\rangle$, then

$$
\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{r}= \pm \iint_{D}\left(Q_{x}-P_{y}\right) \mathrm{d} A
$$

where \pm sign is determined by the direction of C.
$A(D)=\iint_{D} \mathrm{~d} A=\oint_{C} x \mathrm{~d} y=-\oint_{C} y \mathrm{~d} x=\frac{1}{2} \oint_{C} x \mathrm{~d} y-y \mathrm{~d} x-$ the area of $D \subset \mathbb{R}, C$ is the bdry of D oriented counter-clockwise.

3. Curl and Divergence (§13.5):

(a) curl $\overrightarrow{\boldsymbol{F}}=\boldsymbol{\nabla} \times \overrightarrow{\boldsymbol{F}}$: The curl of a vector field $\vec{F}=P \vec{i}+Q \vec{j}+R \vec{k}=\langle P, Q, R\rangle \in \mathbb{R}^{3}$ is defined by

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \vec{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \vec{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \vec{k} \\
\boldsymbol{\nabla} & =\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle . \\
\boldsymbol{\nabla} \times \vec{F} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right|=\vec{i}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
Q & R
\end{array}\right|-\vec{j}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
P & R
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
P & Q
\end{array}\right|=\operatorname{curl} \vec{F}
\end{aligned}
$$

The curl of a vector field measures the tendency for the vector field to swirl around.
(b) $\operatorname{div} \overrightarrow{\boldsymbol{F}}=\boldsymbol{\nabla} \cdot \overrightarrow{\boldsymbol{F}}$: The divergence of a vector field $\vec{F}=P \vec{i}+Q \vec{j}+R \vec{k}=\langle P, Q, R\rangle \in \mathbb{R}^{3}$ is a function of 3 variables defined by $\operatorname{div} \vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$ if P_{x}, Q_{y}, R_{z} exist.
div \vec{F} - measures the tendency of the fluid to diverge from the point (x, y, z).
(c) If $\vec{F}=\langle P, Q, R\rangle \in \mathbb{R}^{3}$, then $\boldsymbol{\operatorname { d i v }} \vec{F}=\boldsymbol{\nabla} \cdot \vec{F}$ is a scalar field, but curl $\vec{F}=\boldsymbol{\nabla} \times \vec{F}$ is a vector field.
(d) Theorem: If $\vec{F}=\langle P, Q, R\rangle \in \mathbb{R}^{3}$, and P, Q and R have continuous 2nd-order partial derivatives, then $\operatorname{div}(\operatorname{curl} \vec{F})=\nabla \cdot(\nabla \times \vec{F})=\mathbf{0}$.
(e) Theorem: If f is scalar function of x, y and z, and has continuous 2nd-order partial derivatives, then $\operatorname{curl}(\operatorname{grad} f)=\nabla \times(\nabla f)=\overrightarrow{\mathbf{0}}$.
(f) Theorem: If \vec{F} is a vector field on \mathbb{R}^{3} whose component functions have continuous partial derivatives and curl $\vec{F}=\overrightarrow{0}$, the \vec{F} is a conservative vector field.
(g) Conservative vector field: If $\vec{F}=\langle P, Q, R\rangle, P, Q, R \in C^{1}\left(\mathbb{R}^{3}\right)$, then
\vec{F} is conservative \Longleftrightarrow curl $\vec{F}=\boldsymbol{\nabla} \times \vec{F}=\overrightarrow{0} \Longleftrightarrow$ there exists a scalar function f such that $\boldsymbol{\nabla} f=\vec{F}$
where f is called a potential function of \vec{F}.
To find f, we solve $\boldsymbol{\nabla} f=\vec{F} \Leftrightarrow f_{x}=P, f_{y}=Q, f_{z}=R$ for f.
(h) Laplace operator: $\boldsymbol{\nabla}^{2}=\boldsymbol{\nabla} \cdot \boldsymbol{\nabla}$ is called the Laplace operator.

$$
\operatorname{div}(\operatorname{grad} f)=\nabla \cdot(\nabla f)=f_{x x}+f_{y y}+f_{z z} \equiv \nabla^{2} f
$$

4. Surface Integrals (§13.6): $S: \vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ in \mathbb{R}^{3}.
$\iint_{S} f(x, y, z) \mathrm{d} S=\iint_{D} f(\vec{r}(u, v))\left|\vec{r}_{u} \times \vec{r}_{v}\right| \mathrm{d} A, \iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}= \pm \iint_{D} \vec{F}(\vec{r}(u, v)) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) \mathrm{d} A$.
5. Stokes' Theorem (§13.7): C is the boundary of S. $C \& S$ are simple, connected, and smooth. curl $\vec{F}=\boldsymbol{\nabla} \times \vec{F}$. $\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{~d} \vec{S}$, where the orientations of C and S follow the right-hand rule.
6. Divergence Theorem (§13.8): $\operatorname{div} \vec{F}=\boldsymbol{\nabla} \cdot \vec{F}=P_{x}+Q_{y}+R_{z}$ if $\vec{F}=\langle P, Q, R\rangle \in \mathbb{R}^{3}$. S, E are simple \& smooth. $\oiint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}=\iiint_{E} \operatorname{div} \vec{F} \mathrm{~d} V$, where S oriented outward is the boundary (closed surface) of the solid E.

7. Applications of line and surface integrals

(a) Mass and center of mass: In the formulas below, C : $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ in \mathbb{R}^{3}. D is a general region in \mathbb{R}^{2}. $S: \vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ in $\mathbb{R}^{3} . \rho(x, y, z)$ or $\rho(x, y)$ is the density of the object. Once we get the mass m, for example, the mass of the wire with density $\rho(x, y, z)$, is $(\bar{x}, \bar{y}, \bar{z})$, where $\bar{x}=\frac{1}{m} \int_{C} x \rho(x, y, z) \mathrm{d} s, \bar{y}=\frac{1}{m} \int_{C} y \rho(x, y, z) \mathrm{d} s, \bar{z}=\frac{1}{m} \int_{C} z \rho(x, y, z) \mathrm{d} s$. The other center of mass is similar.

integral	related computations	the meaning of the integral
$\int_{C} \rho(x, y, z) \mathrm{d} s$	$m=\int_{t_{0}}^{t_{1}} \rho(\vec{r}(t))\left\|\vec{r}^{\prime}(t)\right\| \mathrm{d} t$	mass of a wire from $\vec{r}\left(t_{0}\right)$ to $\vec{r}\left(t_{1}\right)$ along curve C in \mathbb{R}^{3}.
$\iint_{D} \rho(x, y) \mathrm{d} A$	$m=\int_{a}^{b} \int_{y=b(x)}^{y=t(x)} \rho(x, y) \mathrm{d} y \mathrm{~d} x$	mass of a lamina D in \mathbb{R}^{2}
$\iint_{S} \rho(x, y, z) \mathrm{d} S$	$m=\iint_{D} \rho(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| \mathrm{d} A$	mass of the surface S in \mathbb{R}^{3} The double integral can be set up in two different orders, or by polar co- ordinates.
$\iiint_{E} \rho(x, y, z) \mathrm{d} V$	$m=\iint_{D_{x y}} \int_{b(x, y)}^{t(x, y)} \rho(x, y, z) \mathrm{d} z \mathrm{~d} A$	mass of the solid E in \mathbb{R}^{3} The integral can be set up by 3 dif- ferent plane regions, or by cylindri- cal/spherical coordinates.

(b) Integrals with 1 as integrand: In the formulas below, C : $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ in \mathbb{R}^{3}. D is a general region in $\mathbb{R}^{2} . S: \vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ in \mathbb{R}^{3}.

integral	related computations	the meaning of the integral
$\int_{C} \mathrm{~d} s$	$L=\int_{t_{0}}^{t_{1}}\left\|\vec{r}^{\prime}(t)\right\| \mathrm{d} t$	arc length from $\vec{r}\left(t_{0}\right)$ to $\vec{r}\left(t_{1}\right)$ along the curve C
$\iint_{D} \mathrm{~d} A$	$A(D)=\int_{C} x \mathrm{~d} y=-\int_{C} y \mathrm{~d} x=\frac{1}{2} \int_{C} x \mathrm{~d} y-y \mathrm{~d} x$	area of the $D \subset \mathbb{R}^{2}$
$\iint_{S} \mathrm{~d} S$	$A(S)=\iint_{D}\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| \mathrm{d} A$	area of the surface $S \subset \mathbb{R}^{3}$
$\iiint_{E} \mathrm{~d} V$	$V(E)=\iint_{D_{x y}} \int_{b(x, y)}^{t(x, y)} \mathrm{d} z \mathrm{~d} A$	volume of the solid $E \subset \mathbb{R}^{3}$

(c) $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}$ - work done by force \vec{F} along the curve C. $\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}$ - flux through the surface S.

8. Summary on the 2nd type of line and surface integrals

(a) How to evaluate the 2nd type of the line integral? (§13.2, §13.3, §13.4)
i) Direct method: If we can parametrize the curve as C : $\vec{r}=\langle x(t), y(t), z(t)\rangle, t$ from t_{0} (initial time)
to t_{1} (terminal time), then $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{t_{0}}^{t_{1}} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t$
ii) FTLIs: If \vec{F} is conservative, then there exists a potential function f such that $\boldsymbol{\nabla} f=\vec{F}$, and the integral can be evaluated by the Fundamental Theorem of Line Integrals:
$\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=f($ terminal point $)-f($ initial point $)$
iii) By Green's Theorem (2D) or Stokes' Theorem (3D):
A. If C is closed on a simple connected region D in \mathbb{R}^{2}, and $\vec{F}=\langle P, Q\rangle$, then
$\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\iint_{D}\left(\boldsymbol{Q}_{x}-\boldsymbol{P}_{y}\right) \mathrm{d} A$,
where C is the boundary of D with orientation counter-clockwise.
B. If C is closed on a simple connected region D in \mathbb{R}^{3}, and $\vec{F}=\langle P, Q R\rangle$, then
$\oint_{C} \overrightarrow{\boldsymbol{F}} \cdot \mathbf{d} \overrightarrow{\boldsymbol{r}}=\iint_{S} \operatorname{curl} \overrightarrow{\boldsymbol{F}} \cdot \mathrm{~d} \overrightarrow{\boldsymbol{S}}$,
where C is the boundary of S. Their orientations follow the the right-hand rule.
(b) How to evaluate the 2nd type of the surface integral? (§13.6, §13.7, §13.8)
i) Direct method: If we can parametrize the surface as $S: \vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$, and S is oriented with the same direction of $\vec{r}_{u} \times \vec{r}_{v}$, then
$\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}=\iint_{D_{u v}} \vec{F}(\vec{r}(u, v)) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) \mathrm{d} A$.
ii) Stokes' Theorem: If the integrand is curl $\vec{F}=\nabla \times \vec{F}$, or the curve C is the boundary of the surface $S, \iint_{S} \operatorname{curl} \overrightarrow{\boldsymbol{F}} \cdot \mathrm{~d} \vec{S}=\oint_{C} \overrightarrow{\boldsymbol{F}} \cdot \mathrm{~d} \overrightarrow{\boldsymbol{r}}$.
iii) Divergence Th: If S is closed, $\oiint_{S} \vec{F} \cdot \mathbf{d} \vec{S}=\iiint_{E} \operatorname{div} \overrightarrow{\boldsymbol{F}} \mathbf{d} \boldsymbol{V} . S$ is the boundary of E.
9. Summary on Fundamental Theorem of Calculus (§13.9):

See Page 973 on the summary of Fundamental Theorem of Calculus (FTC)

> FTC $\int_{a}^{b} F^{\prime}(x) \mathrm{d} x=F(b)-F(a)$
> FTLIs $\int_{C} \boldsymbol{\nabla} f \cdot \mathrm{~d} \vec{r}=f(\vec{r}(b))-f(\vec{r}(a))$

Green's Th $\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A=\oint_{C} P \mathrm{~d} x+Q \mathrm{~d} y$

$$
\text { Stokes' Th } \iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{~d} \vec{S}=\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{r}
$$

Divergence Th $\iiint \operatorname{div} \vec{F} \mathrm{~d} V=\oiint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}$

