Name:

Instructions for Doing These Problems:

1. When you first attempt the problem, DO NOT use any help (books, notes, etc)
2. If you cannot solve the problem during step 1 , then you may use books and notes. If you solve it during this step, make a special mark next to the problem number and make sure to review that section.
3. If you cannot solve it during step 2, then I recommend either asking me or a classmate for help. Make sure to mark the problem and read the section.
4. Once you've finished all of the problems, you should focus on practice problems from the corresponding sections of your marked problems. I highly recommend doing odd-numbered exercises until you're almost always getting the right answer with no help.
5. Find the domain of $f(x, y)=\sqrt{y} \ln (x-4)$.
6. Find the domain of $g(x, y)=\frac{x^{2}-x y+y^{2}}{\sin (\pi x y)}$.
7. Describe the level surfaces of the function $h(x, y)=x^{2}-y^{2}$.
8. Describe the level surfaces of the function $\sigma(x, y)=\ln \left(x^{2}+y^{2}\right)$
9. Determine whether or not the following limit exists. If it does, calculate the limit:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x}{x+y}
$$

6. Determine whether or not the following limit exists. If it does, calculate the limit:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x y}{2 x^{2}+2 y^{2}}
$$

7. Determine whether or not the following limit exists. If it does, calculate the limit:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{2}+y^{6}}
$$

8. Determine whether or not the following limit exists. If it does, calculate the limit:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x e^{y}}{x+y}
$$

9. Find the value c to make this function continuous everywhere. If no c exists, then explain why:

$$
f(x, y)= \begin{cases}\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1} & (x, y) \neq(0,0) \\ c & (x, y)=(0,0)\end{cases}
$$

10. Find the value c to make this function continuous everywhere. If no c exists, then explain why:

$$
f(x, y)=\left\{\begin{array}{lr}
\frac{x^{2}+2 y^{2}}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\
c & (x, y)=(0,0)
\end{array}\right.
$$

11. Calculate the partial derivatives of $f(x, y)=x y-3 e^{y}$
12. Calculate the partial derivatives of $g(w, x, y, z)=w x^{3}-\cos (x y z)+3 w^{2} \ln (y z)$
13. Calculate the partial derivatives of $\vec{h}(x, y, z)=\left\langle x \tan (x)-y, y z+z^{4}, x y z+4 y e^{x y}\right\rangle$
14. Find the equation of the tangent plane to the surface $f(x, y)=\sin (x y)+x$ at the point $(0,1)$.
15. Find the equation of the tangent plane to the surface $f(x, y)=x y-x^{2}+y$ at the point $(-3,2)$
16. Find the equation of the tangent plane to the surface $\vec{r}(t, s)=\left\langle s-t^{2}, \sin (t), t^{3}+s^{3}\right\rangle$ when $t=0$ and $s=4$.
17. Find the equation of the tangent plane to the surface $\vec{r}(t, s)=\left\langle t^{3}+2 t^{2}-s t+\right.$ $\left.5, s^{2} t, t-s\right\rangle$ at the point $(8,0,1)$.
18. Use linearization to estimate the value of $f(.9, .9)$ where $f(x, y)=y e^{x-1}$.
19. Use linearization to estimate the value of $e^{.1} \cos (3)$
20. Let $z=f(x, y)$ with x and y as functions of s and t given by $x(s, t)=s^{2}-t$ and $y(s, t)=\frac{t}{s}$. Calculate the partials of f with respect to s and t.
21. Let $z=f(x, y, w)$ with x, y, and w as functions of s and t given by $x(s, t)=e^{t}$ and $y(s, t)=s^{3}-s$ and $w(s, t)=s^{4}-\sin (t s)$. Calculate the partials of f with respect to s and t.
22. Let $z=f(x, y)$ with x and y as functions of s, t, u, and v given by $x(s, t, u, v)=$ $u v-e^{s t}$ and $y(s, t, u, v)=\cos (u) \cos (v)$. Calculate the partials of f with respect to s, t, u, and v.
23. Calculate the directional derivative of $f(x, y)=x^{3}+x y-4$ in the direction of $\vec{u}=\langle 1,0\rangle$ at the point $(1,1)$.
24. Calculate the directional derivative of $f(x, y)=y^{2}-x^{3} y$ in the direction of $\vec{u}=$ $\langle 2,1\rangle$ at the point $(-2,3)$.
25. Calculate the maximum rate of change of $f(x, y)=e^{x}+x y^{2}$ at the point $(0,3)$.
26. Determine the direction of the maximum rate of change of $f(x, y)=\sin (x y)$ at the point $(\pi, 2)$.
27. Determine the equation of the tangent plane to the surface $x^{2}-y^{2}-2 z^{2}=4$ at the point $(4,2,2)$.
28. Calculate the equation of the normal line to the surface $x^{2}+y^{2}+z^{2}=1$ at the point ($1,0,0$).
29. Find and classify the local extrema of $f(x, y)=x^{2}-3 y^{2}+1$
30. Find and classify the local extrema of $f(x, y)=x^{2} y-x-y^{2}$
31. Find and classify the local extrema of $f(x, y)=x^{4}+y^{2} x-x y$
32. Find and classify the absolute extrema of $f(x, y)=x^{2}+2 y^{2}-3$ on the disk $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 3\right\}$.
33. Calculate the maximum and minimum values attained by $f(x, y)=x y^{2}$ under the constraint $x^{2}+y^{2}=3$
34. Calculate the maximum and minimum values attained by $f(x, y, z)=x y z$ under the constraint $x^{2}+y^{2}+z^{2}=1$.
35. Calculate two points on the circle $x^{2}+y^{2}=4$: the point furthest from $(3,3)$ and the point closest to $(3,3)$.
36. Describe the object whose volume can be interpreted as the double integral

$$
\iint_{R} 10 d A
$$

where $R=[0,1] \times[-5,2]$.
37. True/False: The integral

$$
\iint_{R} \sqrt{1-x^{2}} d A
$$

where $R=[-1,1] \times[-1,1]$, represents the volume of the upper half-sphere of radius 1 .
38. Estimate the double integral $\iint_{R} x^{2}-y^{2} d A$ where $R=\{(x, y) \mid-4 \leq x \leq 2,2 \leq$ $y \leq 4\}$ using 3 rectangles of equal area.
39. Evaluate the double integral $\iint_{R} x^{4}(1+y)^{3} d A$ where $R=[0,3] \times[0,5]$.
40. Evaluate the double integral $\iint_{R} x e^{x y} d A$ where $R=[-3,1] \times[7,9]$.
41. Evaluate the double integral $\iint_{R} \ln (x) y d A$ where $R=[4,5] \times[-1,1]$.
42. Evaluate the double integral $\iint_{D} 5 x^{2} y d A$ where D is the region bounded by $y=$ $4-x^{2}$ and the x-axis.
43. Evaluate the double integral $\iint_{D} \cos \left(x^{2}\right) d A$ where D is the region bounded by $y=x, x=4$ and the x-axis.
44. Evaluate the double integral $\iint_{D} x e^{y} d A$ where D is the region bounded by $y=$ $\ln (x), x=3$, and the x-axis.
45. Evaluate the double integral $\iint_{D} \frac{y}{1+x^{2}} d A$ where D is the region bounded by $x=$ $-1, x=1, y=0$ and $y=8$.

