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Review guide for mid-term exam 2
Exam date and time: Monday, October 21, 2019, 5:15–6:45PM

Exam info: http://math.colorado.edu/math2400/2400exams.php

1. Functions of several variables (§11.1, §11.2)

(a) Domain, independent/dependent variables, level curves/contour map
(b) Limit: The limit of f (x, y) as (x, y) approaches (a, b) is L: lim

(x,y)→(a,b)
f (x, y) = L.

i. If the limit exists, then f (x, y) must approach the same limit no matter how (x, y) approaches (a, b).
Note: The existence of limit does NOT indicate the existence of f (a, b).

ii. If the limit lim
(x,y)→(a,b)

f (x, y) = L exists, then as (x, y)→ (a, b) along any path C, f (x, y) approaches the

same limit L.
iii. If f (x, y) → L1 as (x, y) → (a, b) along a path C1, and f (x, y) → L2 as (x, y) → (a, b) along a path C2,

where L1 , L2, then lim
(x,y)→(a,b)

f (x, y) doesn’t exist.

But “L1 = L2” does not indicate the existence or non-existence of the limit!
iv. The Squeeze Theorem: If g(x, y) ≤ f (x, y) ≤ h(x, y) for all (x, y) in the domain, and

lim
(x,y)→(a,b)

g(x, y) = lim
(x,y)→(a,b)

h(x, y) = L, then lim
(x,y)→(a,b)

f (x, y) = L.

Note: The theorem can not be used to show the non-existence of the limit.
v. We may also use the polar coordinates (x = r cos θ, y = r sin θ) combining with the Squeeze Theorem

to find the limit.

(c) Continuity: A function f of two variables is called continuous at (a, b) if lim
(x,y)→(a,b)

f (x, y) = f (a, b). It

implies 3 things, which you should check when you check the continuity.
(i) lim

(x,y)→(a,b)
f (x, y) exists; (ii) f (a, b) exists; (iii) the limit and f (a, b) are equal.

2. Partial Derivatives, The Chain Rule (§11.3 & §11.5). Pay attention to the dependent/independent variables!

fx(x, y) = ∂
∂x f (x, y), fy(x, y) = ∂

∂y f (x, y), fxx = ∂
∂x ( fx), fxy = ∂

∂y ( fx), fyx = ∂
∂x ( fy), fyy = ∂

∂y ( fy).
Case I: z = f (x, y), x = x(t), y = y(t), dz

dt =
∂ f
∂x

dx
dt +

∂ f
∂y

dy
dt

Case II: z = f (x, y), x = x(s, t), y = y(s, t), ∂z
∂s =

∂ f
∂x

∂x
∂s +

∂ f
∂y

∂y
∂s ,

∂z
∂t =

∂ f
∂x

∂x
∂t +

∂ f
∂y

∂y
∂t

General Case: u = f (x1, · · · , xn), xi = xi(t1, · · · , tn), ∂u
∂ti

= ∂u
∂x1

∂x1
∂ti

+ · · · + ∂u
∂xn

∂xn
∂ti

Implicit Differentiation: y = y(x) is defined by F(x, y) = 0, dy
dx = −

∂F
∂x
∂F
∂y

= −
Fx
Fy

(How to derive them by Chain Rule?) z = z(x, y) is defined by F(x, y, z) = 0 ∂z
∂x = −

∂F
∂x
∂F
∂z
, ∂z

∂y = −
∂F
∂y
∂F
∂z
.

3. Tangent Plane, Normal Line and Linear Approximation (§11.4).
Let ~n = 〈A, B,C〉 be the normal direction of the tangent plane through P0(x0, y0, z0) ∈ S .
Plane Eqn: A(x − x0) + B(y − y0) + C(z − z0) = 0. Normal Line: x−x0

A =
y−y0

B =
z−z0

C .
Linerization: L(x, y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0).
Differential: dz = d ( f (x, y)) = fx dx + fy dy if z = f (x, y). dz = fx dx + fy dy + fz dz if z = f (x, y, z).

Surface S is given by ~r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉: The uv-coordinates (u0, v0) corresponds to the Carte-
sian point P0(x0, y0, z0). Then the normal direction of the tangent plane (also the direction vector of the
normal line) is ~n = ~ru(u0, v0) × ~rv(u0, v0).

Surface S is given by z = f (x, y) (~r(x, y) = 〈x, y, f (x, y)〉): The normal direction of the tangent plane (also the
direction vector of the normal line) is ~n =

〈
− fx(x0, y0), − fy(x0, y0), 1

〉
.

Surface S is given by F(x, y, z) = k (k – constant): The normal direction of the tangent plane is
~n =

〈
Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)

〉
.
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4. The Gradient Vector and Directional Derivative (§11.6)

(a) The gradient of f :

 ∇f(x0, y0) =
〈
fx(x0, y0), fy(x0, y0)

〉
, (if f is a function of x and y)

∇f(x0, y0, z0) =
〈
fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)

〉
,

(b) The directional derivative of f at P0 in the direction of a unit vector ~u (|~u| = 1) is

D~u f (x, y) = ∇ f (x, y) · ~u = fx(x, y) a + fy(x, y) b ( f is a function of x and y)
D~u f (x, y, z) = ∇ f (x, y, z) · ~u = fx(x, y, z) a + fy(x, y, z) b + fz(x, y, z) c

If we let ~x = 〈x, y〉 (2D) or ~x = 〈x, y, z〉 (3D), then D~u f (~x) = ∇ f (~x) · ~u, D2
~u

f (~x) = ∇
(
D~u f (~x)

)
· ~u.

(c) The max rate of change of f is |∇ f |, and it occurs in the direction ∇ f .

(d) The gradient direction is orthogonal or perpendicular to the level curve in the contour map.

5. Maximum and Minimum Values (§11.7)
If f has a local max/min at (a, b), and fx, fy exist at (a, b), ∇ f (a, b) = 〈0, 0〉 ⇔ fx(a, b) = fy(a, b) = 0. If (a, b) is
a point such that ∇ f (a, b) = ~0 = 〈0, 0〉, it is called a critical point of f .
∇ f (a, b) = ~0 is a necessary, but not a sufficient condition for f to have a local max/min at (a, b).

Second Derivative Test: z = f (x, y), fxx, fxy, fyy ∈ C(D), D is a disk with center (a, b),

∇ f (a, b) = 0, or fx(a, b) = fy(a, b) = 0. D = D(a, b) =

∣∣∣∣∣∣ fxx fxy

fyx fyy

∣∣∣∣∣∣ = fxx fyy − ( fxy)2. Then

(a) If D(a, b) > 0, and fxx(a, b) > 0, f (a, b) is a local minimum.

(b) If D(a, b) > 0, and fxx(a, b) < 0, f (a, b) is a local maximum.

(c) If D(a, b) < 0 f (a, b) is not a local max/min. In this case, (a, b) is called a saddle point.
(d) If D(a, b) = 0, or D(a, b) > 0 but fxx(a, b) = 0, it’s inconclusive.

Procedure for finding extreme values of f in D:

(a) Find the values of f at all the critical points. (b) Find the extreme values of f on the boundary.

(c) Compare the values in steps (a) & (b). The largest = abs. max; The smallest = abs. min of f .

6. Method of Lagrange Multipliers (§11.8) (let f and g be functions of x, y. similarly for 3 variables.)
To find the max/min values of f (x, y) subject to constraint g(x, y) = k, where k is a constant:

(a) Find all values of (x, y) and λ such that ∇ f = λ∇g, g(x, y) = k.

(b) Evaluate f at all points (x, y) that result from (a). The largest/smallest = the abs max/min of f .

For 2 or more constraints, replace the eqns in (a) with ∇ f = λ∇g + µ∇h, g = k1, h = k2.

7. Double Integrals (§12.1) The volume of the solid under z = f (x, y) and above R = [a, b] × [c, d] ⊂ R2:

V =

"
R

f (x, y)dA︸           ︷︷           ︸
double integral

= lim
m,n→∞

m∑
i=1

n∑
j=1

f (x∗i , y
∗
j)∆A︸                  ︷︷                  ︸

Double Riemann Sum

area element: dA = dx dy = dy dx
∆x = b−a

m , ∆y = d−c
n , ∆A = ∆x ∆y.

sample point (x∗i , y
∗
j) ∈ [xi−1, xi] × [y j−1, y j]

8. Iterated Integrals – Fubini’s Th (§12.2)
"

R
f (x, y) dA =

ˆ b

a

ˆ d

c
f (x, y) dy dx =

ˆ d

c

ˆ b

a
f (x, y) dx dy

9. Double Integrals over D (§12.3)
"

D
f (x, y) dA =

ˆ b

a

ˆ g2(x)

g1(x)
f (x, y) dy dx =

ˆ d

c

ˆ h2(y)

h1(y)
f (x, y) dx dy

D =

{
(x, y)

∣∣∣∣∣a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)
}

=

{
(x, y)

∣∣∣∣∣c ≤ y ≤ d, g1(y) ≤ x ≤ g2(y)
}

In rectangular coordinates, the area element dA = dx dy = dy dx.


