Review guide for mid-term exam 2

Exam date and time: Monday, October 21, 2019, 5:15-6:45PM
Exam info: http://math.colorado.edu/math2400/2400exams.php

1. Functions of several variables $(\S 11.1, \S 11.2)$
(a) Domain, independent/dependent variables, level curves/contour map
(b) Limit: The limit of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ as $(\boldsymbol{x}, \boldsymbol{y})$ approaches $(\boldsymbol{a}, \boldsymbol{b})$ is $L: \lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$.
i. If the limit exists, then $f(x, y)$ must approach the same limit no matter how $(\boldsymbol{x}, \boldsymbol{y})$ approaches $(\boldsymbol{a}, \boldsymbol{b})$. Note: The existence of limit does NOT indicate the existence of $f(a, b)$.
ii. If the limit $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ exists, then as $(x, y) \rightarrow(a, b)$ along any path $\boldsymbol{C}, f(x, y)$ approaches the same limit L.
iii. If $f(x, y) \rightarrow L_{1}$ as $(x, y) \rightarrow(a, b)$ along a path C_{1}, and $f(x, y) \rightarrow L_{2}$ as $(x, y) \rightarrow(a, b)$ along a path C_{2}, where $L_{1} \neq L_{2}$, then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ doesn't exist.
But " $L_{1}=L 2$ " does not indicate the existence or non-existence of the limit!
iv. The Squeeze Theorem: If $g(x, y) \leq f(x, y) \leq h(x, y)$ for all (x, y) in the domain, and
$\lim _{(x, y) \rightarrow(a, b)} g(x, y)=\lim _{(x, y) \rightarrow(a, b)} h(x, y)=L$, then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$.
Note: The theorem can not be used to show the non-existence of the limit.
v. We may also use the polar coordinates $(x=r \cos \theta, y=r \sin \theta)$ combining with the Squeeze Theorem to find the limit.
(c) Continuity: A function f of two variables is called continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$. It implies 3 things, which you should check when you check the continuity.
(i) $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists; (ii) $f(a, b)$ exists; (iii) the limit and $f(a, b)$ are equal.
2. Partial Derivatives, The Chain Rule ($\S 11.3 \& \S 11.5$). Pay attention to the dependent/independent variables!
$f_{x}(x, y)=\frac{\partial}{\partial x} f(x, y), f_{y}(x, y)=\frac{\partial}{\partial y} f(x, y), f_{x x}=\frac{\partial}{\partial x}\left(f_{x}\right), f_{x y}=\frac{\partial}{\partial y}\left(f_{x}\right), f_{y x}=\frac{\partial}{\partial x}\left(f_{y}\right), f_{y y}=\frac{\partial}{\partial y}\left(f_{y}\right)$.
Case I: $\quad z=f(x, y), x=x(t), \quad y=y(t), \quad \frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$
Case II: $\quad z=f(x, y), x=x(s, t), y=y(s, t), \quad \frac{\partial z}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}, \frac{\partial z}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$
General Case: $u=f\left(x_{1}, \cdots, x_{n}\right), x_{i}=x_{i}\left(t_{1}, \cdots, t_{n}\right), \frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\cdots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{i}}$

$$
\text { Implicit Differentiation: } y=y(x) \text { is defined by } F(x, y)=0, \quad \frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}=-\frac{F_{x}}{F_{y}}
$$

(How to derive them by Chain Rule?) $z=z(x, y)$ is defined by $F(x, y, z)=0 \frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}, \quad \frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$.
3. Tangent Plane, Normal Line and Linear Approximation (§11.4).

Let $\vec{n}=\langle A, B, C\rangle$ be the normal direction of the tangent plane through $P_{0}\left(x_{0}, y_{0}, z_{0}\right) \in S$.
Plane Eqn: $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$. Normal Line: $\frac{x-x_{0}}{A}=\frac{y-y_{0}}{B}=\frac{z-z_{0}}{C}$.
Linerization: $L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$.
Differential: $d z=d(f(x, y))=f_{x} \mathrm{~d} x+f_{y} \mathrm{~d} y$ if $z=f(x, y) . d z=f_{x} \mathrm{~d} x+f_{y} \mathrm{~d} y+f_{z} \mathrm{~d} z$ if $z=f(x, y, z)$.
Surface S is given by $\vec{r}(u, v)=\langle\boldsymbol{x}(\boldsymbol{u}, \boldsymbol{v}), \boldsymbol{y}(\boldsymbol{u}, \boldsymbol{v}), \boldsymbol{z}(\boldsymbol{u}, \boldsymbol{v})\rangle$: The $u v$-coordinates $\left(u_{0}, v_{0}\right)$ corresponds to the Cartesian point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$. Then the normal direction of the tangent plane (also the direction vector of the normal line) is $\vec{n}=\vec{r}_{\boldsymbol{u}}\left(\boldsymbol{u}_{\mathbf{0}}, \boldsymbol{v}_{\mathbf{0}}\right) \times \overrightarrow{\boldsymbol{r}}_{\boldsymbol{v}}\left(\boldsymbol{u}_{\mathbf{0}}, \boldsymbol{v}_{\mathbf{0}}\right)$.
Surface S is given by $z=f(x, y)(\vec{r}(x, y)=\langle x, y, f(x, y)\rangle)$: The normal direction of the tangent plane (also the direction vector of the normal line) is $\vec{n}=\left\langle-f_{x}\left(x_{0}, y_{0}\right),-f_{y}\left(x_{0}, y_{0}\right), 1\right\rangle$.
Surface S is given by $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\boldsymbol{k}(k-$ constant $)$: The normal direction of the tangent plane is $\vec{n}=\left\langle F_{x}\left(x_{0}, y_{0}, z_{0}\right), F_{y}\left(x_{0}, y_{0}, z_{0}\right), F_{z}\left(x_{0}, y_{0}, z_{0}\right)\right\rangle$.

4. The Gradient Vector and Directional Derivative (§11.6)

(a) The gradient of $f:\left\{\begin{aligned} \nabla \mathbf{f}\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{0}\right) & =\left\langle\mathbf{f}_{\mathbf{x}}\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{0}\right), \mathbf{f}_{\mathbf{y}}\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{0}\right)\right\rangle \text {, (if } f \text { is a function of } x \text { and } y \text {) } \\ \nabla \mathbf{f}\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{0}, \mathbf{z}_{0}\right) & =\left\langle\mathbf{f}_{\mathbf{x}}\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{0}, \mathbf{z}_{0}\right), \mathbf{f}_{\mathbf{y}}\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}, \mathbf{z}_{\mathbf{0}}\right), \mathbf{f}_{\mathbf{z}}\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}, \mathbf{z}_{0}\right)\right\rangle,\end{aligned}\right.$
(b) The directional derivative of f at P_{0} in the direction of a unit vector $\vec{u}(|\vec{u}|=1)$ is

$$
\begin{aligned}
D_{\vec{u}} f(x, y) & =\nabla f(x, y) \cdot \vec{u} \quad=f_{x}(x, y) a+f_{y}(x, y) b(f \text { is a function of } x \text { and } y) \\
D_{\vec{u}} f(x, y, z) & =\nabla f(x, y, z) \cdot \vec{u}=f_{x}(x, y, z) a+f_{y}(x, y, z) b+f_{z}(x, y, z) c
\end{aligned}
$$

If we let $\vec{x}=\langle x, y\rangle(2 \mathrm{D})$ or $\vec{x}=\langle x, y, z\rangle(3 \mathrm{D})$, then $D_{\vec{u}} f(\vec{x})=\nabla f(\vec{x}) \cdot \vec{u}, D_{\vec{u}}^{2} f(\vec{x})=\nabla\left(D_{\vec{u}} f(\vec{x})\right) \cdot \vec{u}$.
(c) The max rate of change of f is $|\nabla f|$, and it occurs in the direction ∇f.
(d) The gradient direction is orthogonal or perpendicular to the level curve in the contour map.
5. Maximum and Minimum Values (§11.7)

If f has a local max $/ \mathrm{min}$ at (a, b), and f_{x}, f_{y} exist at $(a, b), \nabla f(a, b)=\langle 0,0\rangle \Leftrightarrow f_{x}(a, b)=f_{y}(a, b)=0$. If (a, b) is a point such that $\nabla f(a, b)=\overrightarrow{0}=\langle 0,0\rangle$, it is called a critical point of f.
$\nabla f(a, b)=\overrightarrow{0}$ is a necessary, but not a sufficient condition for f to have a local max/min at (a, b).
Second Derivative Test: $z=f(x, y), f_{x x}, f_{x y}, f_{y y} \in C(\mathfrak{D}), \mathfrak{D}$ is a disk with center (a, b),
$\nabla f(a, b)=\mathbf{0}$, or $f_{x}(a, b)=f_{y}(a, b)=0 . D=D(a, b)=\left|\begin{array}{ll}f_{x x} & f_{x y} \\ f_{y x} & f_{y y}\end{array}\right|=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$. Then
(a) If $D(a, b)>0$, and $f_{x x}(a, b)>0, f(a, b)$ is a local minimum.
(b) If $D(a, b)>0$, and $f_{x x}(a, b)<0, f(a, b)$ is a local maximum.
(c) If $D(a, b)<0 f(a, b)$ is not a local max/min. In this case, (a, b) is called a saddle point.
(d) If $D(a, b)=0$, or $D(a, b)>0$ but $f_{x x}(a, b)=0$, it's inconclusive.

Procedure for finding extreme values of f in \mathfrak{D} :

(a) Find the values of f at all the critical points. (b) Find the extreme values of f on the boundary.
(c) Compare the values in steps (a) \& (b). The largest $=$ abs. max; The smallest $=$ abs. \min of f.
6. Method of Lagrange Multipliers (§11.8) (let f and g be functions of x, y. similarly for 3 variables.) To find the max/min values of $f(x, y)$ subject to constraint $g(x, y)=k$, where k is a constant:
(a) Find all values of (x, y) and λ such that $\nabla f=\lambda \nabla g, g(x, y)=k$.
(b) Evaluate f at all points (x, y) that result from (a). The largest/smallest $=$ the abs max $/ \min$ of f.

For 2 or more constraints, replace the eqns in (a) with $\nabla f=\lambda \nabla g+\mu \nabla h, g=k_{1}, h=k_{2}$.
7. Double Integrals (§12.1) The volume of the solid under $z=f(x, y)$ and above $R=[a, b] \times[c, d] \subset \mathbb{R}^{2}$:

$$
V=\underbrace{\iint_{R} f(x, y) d A}_{\text {double integral }}=\lim _{m, n \rightarrow \infty} \underbrace{\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A}_{\text {Double Riemann Sum }} \begin{aligned}
& \text { area element: } d A=d x d y=d y d x \\
& \begin{array}{l}
\Delta x=\frac{b-a}{m}, \Delta y=\frac{d-c}{n}, \Delta A=\Delta x \Delta y . \\
\text { sample point }\left(x_{i}^{*}, y_{j}^{*}\right) \in\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]
\end{array}
\end{aligned}
$$

8. Iterated Integrals - Fubini's Th (§12.2) $\iint_{R} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} y \mathrm{~d} x=\int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} x \mathrm{~d} y$
9. Double Integrals over D (§12.3) $\iint_{D} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) \mathrm{d} y \mathrm{~d} x=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \mathrm{d} x \mathrm{~d} y$

$$
D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}=\left\{(x, y) \mid c \leq y \leq d, g_{1}(y) \leq x \leq g_{2}(y)\right\}
$$

In rectangular coordinates, the area element $\mathrm{d} A=\mathrm{d} x \mathrm{~d} y=\mathrm{d} y \mathrm{~d} x$.

