Review guide for mid-term exam 1 - Fall 2019

Exam date and time: Monday, September 23, 2019, 5:15-6:45PM

1. Vectors and Their Operations: $\vec{a} \pm \vec{b}, c \vec{a}, \vec{a} \cdot \vec{b}, \vec{a} \times \vec{b}, \vec{a} \cdot(\vec{b} \times \vec{c})$.

Let $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle, \vec{c}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle \in V_{3}$, and $c \in \mathbb{R}$ be a scalar.
(a) If $P(x, y, z) \in \mathbb{R}^{3}$, the vector $\vec{v}=\overrightarrow{O P}=\langle x, y, z\rangle$ is the position vector of the point P.
$|\vec{v}|=|\overrightarrow{O P}|=\sqrt{x^{2}+y^{2}+z^{2}}$.
(b) $\vec{a}+\vec{b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right\rangle, \vec{a}-\vec{b}=\left\langle a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right\rangle, c \vec{a}=\left\langle c a_{1}, c a_{2}, c a_{3}\right\rangle$, $\vec{a} \cdot \vec{b}=\left\langle a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}\right\rangle=|\vec{a}||\vec{b}| \cos \theta$, where θ is the angle between \vec{a} and \vec{b}.
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=\vec{i}\left|\begin{array}{ll}a_{2} & a_{3} \\ b_{2} & b_{3}\end{array}\right|-\vec{j}\left|\begin{array}{cc}a_{1} & a_{3} \\ b_{1} & b_{3}\end{array}\right|+\vec{k}\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|=\left\langle a_{2} b_{3}-a_{3} b_{2},-\left(a_{1} b_{3}-a_{3} b_{1}\right), a_{1} b_{2}-a_{2} b_{1}\right\rangle$.

2. More on Vectors:

(a) $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$, where θ is the angle between \vec{a} and $\vec{b} \cdot \theta=\arccos \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)$.

$\vec{F}=\overrightarrow{P Q}$ is the force moves the object from P to Q with with displacement vector $\vec{D}=\overrightarrow{P Q}$. The work done by \vec{F} is $W=|\vec{F}||\vec{D}| \cos \theta=\vec{F} \cdot \vec{D}$.
(b) The addition of any two vectors follows the triangle and parallelogram laws. A vector \vec{b} can be decomposed as $\vec{b}=\operatorname{proj}_{\vec{a}} \vec{b}+\operatorname{orth}_{\vec{a}} \vec{b}$.

scalar projection of \vec{b} onto $\vec{a}: \quad \operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$
vector projection of \vec{b} onto $\vec{a}: \quad \operatorname{proj}_{\vec{a}} \vec{b}=\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right) \frac{\vec{a}}{|\vec{a}|}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}$
orthogonal projection of \vec{b} onto \vec{a} : $\quad \operatorname{orth}_{\vec{a}} \vec{b}=\vec{b}-\operatorname{proj}_{\vec{a}} \vec{b}$
(c) $\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \vec{n}$, where n is the unit vector perpendicular to both \vec{a} and \vec{b}, and whose direction is determined by the right-hand rule.
(d) The area of a parallelogram and the volume of a parallelepiped:

$$
\begin{aligned}
& \text { area }=|\vec{a}|(|\vec{b}| \sin \theta)=|\vec{a} \times \vec{b}| \\
& \qquad \operatorname{vol}=|\vec{a} \cdot(\vec{b} \times \vec{c})|=\operatorname{Abs}\left(\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|\right)
\end{aligned}
$$

i. The area of the triangle with 3 vertices A, B and C is $\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|$ - half area of the parallelogram.
ii. The volume of the tetrahedron with vertices A, B, C and D is $\frac{1}{6}$ of the volume of the parallelepiped spanned by $\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}$.
(e) If θ is the angle between \vec{a} and $\vec{b}, \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}, \sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}$.
(f) $\vec{a} \perp \vec{b} \Longleftrightarrow \vec{a} \cdot \vec{b}=0$. ($\overrightarrow{0} \perp$ any vector.)
(g) $\vec{a} \| \vec{b} \Longleftrightarrow \vec{a} \times \vec{b}=\overrightarrow{0} \Longleftrightarrow \vec{a}=c \vec{b}$ or $\vec{b}=c \vec{a} \Longleftrightarrow \frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$ (if $\vec{b} \neq \overrightarrow{0}$). ($\overrightarrow{0} \|$ any vector.)
(h) $\vec{a} \times \vec{b} \perp \vec{a}, \vec{a} \times \vec{b} \perp \vec{b}$. $\vec{a} \times \vec{b}$ is orthogonal to the plane determined by \vec{a} and \vec{b} if $\vec{a} \nmid \vec{b}$.

3. Lines and Planes in A Three Dimensional Space:

(a) Equation of a line L through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ with direction $\vec{v}=\langle a, b, c\rangle$.
(1) Vector equation: $\vec{r}=\vec{r}_{0}+t \vec{v}$, where $\vec{r}_{0}=\overrightarrow{O P_{0}}$ is the position vector of $P_{0}, t \in \mathbb{R}$.
(2) Parametric equations: $x=x_{0}+a t, y=y_{0}+b t, z=z_{0}+c t$, parameter $t \in \mathbb{R}$.
(3) Symmetric equations: $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$
(b) Equation of a line segment from $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ to $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$. Let $\vec{r}_{0}=\overrightarrow{O P_{0}}, \overrightarrow{r_{1}}=\overrightarrow{O P_{1}}, \vec{r}=\overrightarrow{O P}$.

$$
\overrightarrow{P_{0} P} \| \overrightarrow{P_{0} P_{1}} \Leftrightarrow \overrightarrow{P_{0} P}=t \overrightarrow{P_{0} P_{1}} \Leftrightarrow \vec{r}(t)-\vec{r}_{0}=t\left(\vec{r}_{1}-\vec{r}_{0}\right) \Leftrightarrow \vec{r}(t)=(1-t) \vec{r}_{0}+t \vec{r}_{1}, 0 \leq t \leq 1 .
$$

(c) Equation of a plane π through a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ with a normal direction $\vec{n}=\langle a, b, c\rangle$.
(1) Vector equation of the plane: $\overrightarrow{\boldsymbol{n}} \cdot\left(\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}_{0}\right)=\mathbf{0}$, or $\overrightarrow{\boldsymbol{n}} \cdot \overrightarrow{\boldsymbol{r}}=\overrightarrow{\boldsymbol{n}} \cdot \overrightarrow{\boldsymbol{r}}_{0}$ where $\vec{r}_{0}=\overrightarrow{O P_{0}}$.
(2) Scalar equation of the plane: $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$
(3) Linear equation of the plane: $\boldsymbol{a} \boldsymbol{x}+\boldsymbol{b} \boldsymbol{y}+\boldsymbol{c z}+\boldsymbol{d}=\mathbf{0}, \quad$ where $d=-\left(a x_{0}+b y_{0}+c z_{0}\right)$
(d) Distances: - Formulas can be derived by projection of vectors.
(1) The distance between a point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and a plane $\pi: a x+b y+c z+d=0$.

$$
\begin{aligned}
D & =\operatorname{dist}\left(\boldsymbol{P}_{1}, \pi_{2}\right)=\left|\operatorname{comp}_{\vec{n}} \vec{b}\right|=\left|\operatorname{proj}_{\vec{n}} \vec{b}\right|=\frac{|\vec{n} \vec{b}|}{|\vec{b}|} \\
& =\frac{\left|a\left(x_{1}-x_{0}\right)+b\left(y_{1}-y_{0}\right)+c\left(z_{1}-z_{0}\right)\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{\left|a x_{1}+b y_{1}+c z_{1}-\left(a x_{0}+b y_{0}+c z_{0}\right)\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& =\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}\left(a x_{0}+b y_{0}+c z_{0}+d=0\right)
\end{aligned}
$$

(2) The distance between two parallel planes: $\pi_{1}: a x+b y+c z+d_{1}=0 ; \pi_{2}: a x+b y+c z+d_{2}=0$.

$$
D=\operatorname{dist}\left(\pi_{1}, \pi_{2}\right)=\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \stackrel{\text { or }}{=} \operatorname{dist}\left(\boldsymbol{P}, \pi_{2}\right), \quad\left(\boldsymbol{P} \text { is any point on } \pi_{1}\right)
$$

(3) The distance between parallel line (L) and plane $(\pi): \boldsymbol{D}=\operatorname{dist}(\boldsymbol{L}, \boldsymbol{\pi})=\operatorname{dist}(\boldsymbol{P}, \boldsymbol{\pi})$, where P can be any point on L.
(4) The distance between parallel lines $\left(L_{1} \| L_{2}\right) \boldsymbol{D}=\operatorname{dist}\left(\boldsymbol{L}_{\mathbf{1}}, \boldsymbol{L}_{\mathbf{2}}\right)=\operatorname{dist}\left(\boldsymbol{P}, \boldsymbol{L}_{2}\right)$, where P is any point on L_{1}.
(5) The distance between a point $P\left(x_{0}, y_{0}, z_{0}\right)$ and a line $L: \frac{x-c_{1}}{a_{1}}=\frac{y-c_{2}}{a_{2}}=\frac{z-c_{3}}{a_{3}}$.

$C\left(c_{1}, c_{2}, c_{3}\right) \in L$ is on $L . \vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ is the direction vector of L. Let $\vec{b}=\overrightarrow{C P}$. Then
$D=|P Q|=\left|\operatorname{orth}_{\vec{a}}^{\vec{b}}\right|=\left|\vec{b}-\operatorname{proj}_{\vec{a}} \vec{b}\right|$
(6) The distance between two skew lines:

$\boldsymbol{D}=\operatorname{dist}\left(\boldsymbol{L}_{1}, \boldsymbol{L}_{2}\right)=\left|\operatorname{Comp}_{\vec{n}} \overrightarrow{\boldsymbol{P}_{1} \boldsymbol{P}_{2}}\right|=\frac{\left|\vec{n} \cdot \overrightarrow{\boldsymbol{P}_{1} \boldsymbol{P}_{2}}\right|}{|\vec{n}|}$,
where $\vec{n}=\vec{l}_{1} \times \vec{l}_{2}$, and \vec{l}_{1}, \vec{l}_{2} are the direction vectors of L_{1} and $L_{2} . P_{1} \in L_{1}, P_{2} \in L_{2}$.

4. Cylindrical and Spherical Coordinates:

Cylindrical coord $(r, \theta, z):\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta \\ z=z\end{array} \quad\right.$ Spherical coord: $(\rho, \theta, \phi): \begin{cases}x=\rho \sin \phi \cos \theta \\ y & =\rho \sin \phi \sin \theta \\ z & =\rho \cos \phi\end{cases}$
(a) Convert points or equations in Cartesian (or rectangular) coordinates to that in cylindrical or spherical coordinates, and verse visa.
(b) Space curves, surfaces, solids in cylindrical or spherical coordinates.

5. Space Curves and Surfaces:

(a) A space curve C can be described by a vector function $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$, or parametric equations $x=x(t), y=y(t), z=z(t)$, where t is the parameter.

The domain of the vector function is the intersection of the domains of the components.
$\vec{r}(t)$ is continuous if $\lim _{x \rightarrow a} \vec{r}(t)=\vec{r}(a)$.
$\vec{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$.
$\int_{a}^{b} \vec{r}(t) \mathrm{d} t=\left\langle\int_{a}^{b} x(t) \mathrm{d} t, \int_{a}^{b} y(t) \mathrm{d} t, \int_{a}^{b} z(t) \mathrm{d} t\right\rangle$.
If a particle position at time t is described by $\vec{r}(t)$, $\vec{r}^{\prime}(t)$ is the velocity of the particle at t, and $\vec{r}^{\prime \prime}(t)$ is the acceleration of the particle.
(b) Equation of the tangent line:

If $C: \vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ is a space curve, and $P_{0}\left(x_{0}, y_{0}, z_{0}\right) \in C$, and P_{0} corresponds to $t=t_{0}$, then the equation of the tangent line through P_{0} is

$$
\vec{r}(t)=\vec{r}\left(t_{0}\right)+t \vec{r}^{\prime}\left(t_{0}\right) \text { or } x=x_{0}+a t, y=y_{0}+b t, z=z_{0}+c t, \text { or } \frac{x-x_{0}}{a}=\frac{x-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

where $\vec{r}\left(t_{0}\right)=\overrightarrow{O P_{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle, \vec{r}^{\prime}\left(t_{0}\right)=\langle a, b, c\rangle$.
Equation of a normal plane through P_{0} is $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$.
(c) The arc length of a space curve C : $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ from $t=a$ to $t=b$ is $L=\int_{C} \mathrm{~d} s=\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| \mathrm{d} t=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} \mathrm{~d} t, \quad$ (similarly for arc length in $2 D$.)
(d) In 3D, a space surface can be described by a vector function $\vec{r}(u, v)$ with two parameters:

$$
\vec{r}(u, v)=x(u, v) \vec{i}+y(u, v) \vec{j}+z(u, v) \vec{k}
$$

where $(u, v) \in D . D$ is the domain of \vec{r}.
Parametric equations of surface $S: x=x(u, v), y=y(u, v), z=z(u, v)$.
(e) Quadric surfaces: cylinder, ellipsoid, elliptic paraboloid, hyperbolic paraboloid, cone, hyperboloid with one or two sheet(s), etc. See Page 679 for the plots of some basic quadric surfaces.
(f) Parametrize a space curve or a surface:

A space curve C : $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ usually has one parameter (t).
A space surface $S: \vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$. usually has two parameters (u, v).

