Written Description	Draw and label the base. Draw the bottom of one of the slices

The base is a circle of radius 2 centered about the origin. The cross sections perpendicular to the x-axis are squares.

The base is a circle of radius 2 centered about the origin. The cross sections perpendicular to the x-axis are equilateral triangles.

The base is a square with vertices at the points $(-2,-2),(-2,2),(2,-2)$, and $(2,2)$. The cross sections are rectangles of height $f(x)=-x^{2}+4$ and are perpendicular to the x axis.

The base is the region enclosed by $y=x^{2}$ and $y=3$. The cross sections perpendicular to the y-axis are squares.

The base is the parabolic region $x=y^{2}$ and $x=$ 3. The cross sections perpendicular to the x-axis are right isosceles triangles whose leg lies in the region.

| Draw one slice and label its |
| :--- | :--- |
| dimensions. | \(\begin{aligned} \& Write the integral for the \\

\& volume.\end{aligned}\)

