Math 2300-007: Quiz 9

Name: \qquad Solutions

Score: \qquad

1. (5 points) Find the 5th degree Taylor Polynomial for $f(x)=\sin (x)$ centered at $a=0$.

n	$f^{(n)}(x)$	$f^{(n)}(a)=f^{(n)}(0)$
0	$\sin (x)$	0
1	$\cos (x)$	1
2	$-\sin (x)$	0
3	$-\cos (x)$	-1
4	$\sin (x)$	0
5	$\cos (x)$	1

Consequently, $T_{5}(x)$, the fifth-degree Taylor Polynomial for $f(x)=\sin (x)$, centered at $a=0$ is given by

$$
\begin{aligned}
& T_{5}(x) \\
& =f(0)+\frac{f^{\prime}(0)}{1!}(x-0)^{1}+\frac{f^{\prime \prime}(0)}{2!}(x-0)^{2}+\frac{f^{\prime \prime \prime}(0)}{3!}(x-0)^{3}+\frac{f^{(4)}(0)}{4!}(x-0)^{4}+\frac{f^{(5)}(0)}{5!}(x-0)^{5} \\
& =0+\frac{1}{1} x+\frac{0}{2!} x^{2}-\frac{1}{3!} x^{3}+\frac{0}{4!} x^{4}+\frac{1}{5!} x^{5} \\
& =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
\end{aligned}
$$

2. (5 points) What is the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{\sqrt{n}}(5 x-1)^{n}$?

First, we apply the ratio test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-3)^{n+1}(5 x-1)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{(-3)^{n}(5 x-1)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{3(5 x-1)}{1} \cdot \frac{\sqrt{n}}{\sqrt{n+1}}\right| \\
& =|3(5 x-1)| \cdot \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}} \\
& =|3(5 x-1)| \cdot 1 .
\end{aligned}
$$

In order for the ratio test to imply that the series converges, we need

$$
\begin{gathered}
-1<3(5 x-1)<1 \\
\frac{-1}{3}<5 x-1<\frac{1}{3} \\
\frac{2}{3}<5 x<\frac{4}{3} \\
\frac{2}{15}<x<\frac{4}{15} .
\end{gathered}
$$

This shows that the series converges for x in $\left(\frac{2}{15}, \frac{4}{15}\right)$ and diverges for $x<\frac{2}{15}$ and for $x>\frac{4}{15}$. It remains to check what happens at the endpoints:
$x=\frac{2}{15}:$ We have

$$
\sum_{n=1}^{\infty} \frac{(-3)^{n}}{\sqrt{n}}\left(5 \cdot \frac{2}{15}-1\right)^{n}=\sum_{n=1}^{\infty} \frac{(-3)^{n}}{\sqrt{n}}\left(-\frac{1}{3}\right)^{n}=\sum_{n=1}^{\infty} \frac{(1)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

which diverges by the p-test $(p=1 / 2 \leq 1)$.
$\underline{x=\frac{4}{15}}$: We have

$$
\sum_{n=1}^{\infty} \frac{(-3)^{n}}{\sqrt{n}}\left(5 \cdot \frac{4}{15}-1\right)^{n}=\sum_{n=1}^{\infty} \frac{(-3)^{n}}{\sqrt{n}}\left(\frac{1}{3}\right)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
$$

which converges by the Alternating Series Test.
Consequently, the interval of convergence for the series $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{\sqrt{n}}(5 x-1)^{n}$ is

$$
\left(\frac{2}{15}, \frac{4}{15}\right] .
$$

