Math 2300-007: Quiz 6

Name: \qquad Score: \qquad

1. (1 point) Write down a formula for work in terms of force and distance.
2. (1 point) In a sentence or two, describe your plan for solving the problem below.
3. (5 points) Water is pumped from the top of a conical tank of height 4 meters and base radius 2 meters depicted below. How much work is required to empty the tank of water if the initial height of the water is 3 meters? You may assume that the mass of water on Earth is 1000 kilograms per cubic meter and that $g=9.8 \frac{\mathrm{~m}}{\sec ^{2}}$ is the acceleration due to gravity on Earth. (Set up, but do not evaluate the integral.)

4. The lamina depicted below has centroid $(5,6)$ and mass density $\rho=1$ kilogram per square meter. Suppose M_{x} is the moment of the system about the x-axis and M_{y} is the moment of the system about the y-axis.

Use the figure provided to answer the following questions. For each question, choose the best answer.
(a) (1 point) If the density is changed from $\rho=1 \mathrm{~kg} / \mathrm{m}^{2}$ to $\rho=2 \mathrm{~kg} / \mathrm{m}^{2}$, then:
(i) M_{x} increases, M_{y} increases, and the centroid stays at $(5,6)$;
(ii) M_{x} increases, M_{y} decreases, and the centroid stays at $(5,6)$;
(iii) M_{x} increases, M_{y} increases, and the centroid moves to the right of $(5,6)$;
(iv) M_{x} decreases, M_{y} increases, and the centroid moves to the left of $(5,6)$;
(v) M_{x} decreases, M_{y} decreases, and the centroid stays at $(5,6)$.
(vi) M_{x} and M_{y} do not change, and the centroid stays at $(5,6)$.
(b) (1 point) If a point mass of 3 kg is added to the system at the point $(7,6)$, then:
(i) M_{x} increases, M_{y} does not change, and the centroid stays at $(5,6)$;
(ii) M_{x} increases, M_{y} decreases, and the centroid stays at $(5,6)$;
(iii) M_{x} increases, M_{y} increases and the centroid moves to the right of $(5,6)$;
(iv) M_{x} decreases, M_{y} does not change and the centroid moves to the left of $(5,6)$;
(v) M_{x} and M_{y} do not change, and the centroid stays at $(5,6)$.

