Polar Coordinates (Appendix H1)

Thanks to Faan Tone Liu

Key Points:

• Every location in the plane can be described by (r, θ) , where

r = distance from the origin

 θ = angle from the positive *x*-axis.

• Consider the following picture:

• Converting from polar to rectangular coordinates:

$$x =$$

 $y =$

• Converting from rectangular to polar coordinates:

$$r^2 = \tan \theta =$$

Examples:

- 1. Plot the following points:
 - A. $(r, \theta) = (2, \frac{2\pi}{3})$ B. $(r, \theta) = (4, \frac{3\pi}{2})$ C. $(r, \theta) = (-3, \frac{3\pi}{4})$ D. $(r, \theta) = (0, \frac{11\pi}{6})$
- 2. Convert $(2, \frac{2\pi}{3})$ into rectangular coordinates.

- 3. Convert $(-5, -5\sqrt{3})$ into polar coords.
- 4. Convert r = 2 to rectangular coords.
- 5. Convert $r = 3\cos\theta$ to rectangular coords.

6. Graph the following polar curves:

7. Graph the following polar curves (Hint: first graph in rect. coords):

