Math 2300-007: Exam III Study Guide

Topics List:

- §8.5: Power Series
- Interval of convergence (Don't forget the endpoints!)
- Radius of convergence (always symmetric around center)
- Ratio test
- §8.6: Representations of Functions as Power Series
- Making new power series from geomentric series by...
* Substitution
* Differentiation
* Integration
* Multiplication by a power of x
- Can "steal" the interval of convergence from the geometric series, but need to check the endpoints!
- §8.7: Taylor and Maclaurin Series
- Taylor polynomials/series
* Find from scratch using f and it's derivatives evaluated at "center" a
* Find by modifying the Taylor polynomials/series of common functions
- Remember Maclauren series for $\frac{1}{1-x}, e^{x}, \sin x, \cos x, \arctan x, \ln (1+x)$.
- Can use Taylor polynomials/series in place of "complicated" functions when e.g.
* integrating
* finding limits
* estimating values such as $\sqrt{2}$ or $\ln (3)$ or e.
- Taylor's Inequality for estimating error. Use in several ways:
* to estimate error in estimate of e.g. e or $\sqrt{5}$.
* to find n so that the error in your approximation is within a certain amount
* to prove that a Taylor series for $f(x)$ converges to $f(x)$ in the interval of convergence
- §7.1, 7.2, 7.3: Differential Equations (equations involving derivatives)
- Checking that an equation is a solution to a differential equation
- Slope fields (graphical perspective)
- Euler's method (numerical perspective)
- Separation of variables (analytic perspective)
- Vocabulary: equilibrium solution (stable, unstable), autonomous

Selected Example Problems Provided by Class

1. Evaluate $\int e^{-x^{2}} d x$ as in infinite series.
2. Use an infinite series to find $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$.
3. (a) Find the 4th degree polynomial for $f(x)=\sqrt{x}$ centered at $a=1$ by differentiating and using the general form of Taylor Polynomials.
(b) Use the previous answer to find the 4th degree Taylor Polynomial for $g(x)=$ $\sqrt{1-x}$ centered at $a=0$.
(c) Use the previous answer to find a 3rd degree Taylor Polynomial for $h(x)=\frac{1}{\sqrt{1-x^{2}}}$
4. Determine the value of the sum $\sum_{n=0}^{\infty} \frac{5 \cdot 3^{n}}{(n+1)!}$.
5. Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{(2 x+1)^{n}}{n \cdot 3^{n}}$. What is the radius of convergence?
6. Use Euler's method with a step size of 0.3 to estimate $y(0.9)$, where $y(x)$ is the solution to the initial-value problem

$$
y^{\prime}=x^{2}, y(0)=1
$$

7. Solve the differential equation

$$
f^{\prime}(x)=f(x)(1-f(x)), \quad f(0)=\frac{1}{3}
$$

8. Find the Taylor series for $f(x)=\frac{7}{x^{4}}$ about $x=-3$.
9. Show that the Maclauren series for $\cos (x)$ converges to $\cos x$.
10. Estimate $\ln (1.4)$ to be within 0.0005 .
11. Solve the differential equation $\frac{d v}{d t}=e^{v+2 t}$.
12. Determine the Taylor Series for $f(x)=x^{6} e^{2 x^{3}}$ about $x=0$.
13. A function $y(t)$ satisfies the differential equation

$$
\frac{d y}{d t}=y^{4}-6 y^{3}+5 y^{2}
$$

What are the constant solutions of the equation? For what values of y is $y(t)$ increasing? Decreasing?
14. Suppose $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=-4$ and diverges when $x=6$. What can be said about the convergence or divergence of the following series?
(a) $\sum_{n=0}^{\infty} c_{n}$
(b) $\sum_{n=0}^{\infty} c_{n} 8^{n}$
(c) $\sum_{n=0}^{\infty} c_{n}(-3)^{n}$
(d) $\sum_{n=0}^{\infty}(-1)^{n} c_{n} 9^{n}$
15. How large should n be to estimate e to within six decimal places (0.0000005) using a Taylor polynomial centered at $a=0$?
16. Determine the value of the sum $\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$
17. What are the radius and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$?
18. Solve the differential equation

$$
\frac{d y}{d x}=\frac{t e^{t}}{y \sqrt{1+y^{2}}}
$$

19. Find the 10th degree Taylor Polynomial centered at $a=1$ for the function $f(x)=$ $2 x^{2}-x+1$.
20. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$.
21. Sketch the direction field for the differential equation $y^{\prime}=x y-x^{2}$. Then, sketch the solution curve that passes through the point $(0,1)$.
22. Use a 5 th degree Taylor polynomial centered at 0 to estimate $\sin \left(3^{\circ}\right)$. What does Taylor's inequality say about the error?
