Math 2300–007: Exam III Study Guide

Topics List:

- §8.5: Power Series
 - Interval of convergence (Don't forget the endpoints!)
 - Radius of convergence (always symmetric around center)
 - Ratio test
- §8.6: Representations of Functions as Power Series
 - Making new power series from geomentric series by...
 - * Substitution
 - * Differentiation
 - * Integration
 - * Multiplication by a power of x
 - Can "steal" the interval of convergence from the geometric series, but *need to* check the endpoints!
- §8.7: Taylor and Maclaurin Series
 - Taylor polynomials/series
 - * Find from scratch using f and it's derivatives evaluated at "center" a
 - * Find by modifying the Taylor polynomials/series of common functions
 - Remember Maclauren series for $\frac{1}{1-x}$, e^x , $\sin x$, $\cos x$, $\arctan x$, $\ln(1+x)$.
 - Can use Taylor polynomials/series in place of "complicated" functions when e.g.
 - * integrating
 - * finding limits
 - * estimating values such as $\sqrt{2}$ or $\ln(3)$ or e.
 - Taylor's Inequality for estimating error. Use in several ways:
 - * to estimate error in estimate of e.g. e or $\sqrt{5}$.
 - * to find n so that the error in your approximation is within a certain amount
 - \ast to prove that a Taylor series for f(x) converges to f(x) in the interval of convergence
- §7.1, 7.2, 7.3: Differential Equations (equations involving derivatives)
 - Checking that an equation is a solution to a differential equation
 - Slope fields (graphical perspective)
 - Euler's method (numerical perspective)
 - Separation of variables (analytic perspective)
 - Vocabulary: equilibrium solution (stable, unstable), autonomous

Selected Example Problems Provided by Class

- 1. Evaluate $\int e^{-x^2} dx$ as in infinite series.
- 2. Use an infinite series to find $\lim_{x\to 0} \frac{e^x 1 x}{x^2}$.
- 3. (a) Find the 4th degree polynomial for $f(x) = \sqrt{x}$ centered at a = 1 by differentiating and using the general form of Taylor Polynomials.
 - (b) Use the previous answer to find the 4th degree Taylor Polynomial for $g(x) = \sqrt{1-x}$ centered at a = 0.
 - (c) Use the previous answer to find a 3rd degree Taylor Polynomial for $h(x) = \frac{1}{\sqrt{1-x^2}}$
- 4. Determine the value of the sum $\sum_{n=0}^{\infty} \frac{5 \cdot 3^n}{(n+1)!}$.
- 5. Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n \cdot 3^n}$. What is the radius of convergence?
- 6. Use Euler's method with a step size of 0.3 to estimate y(0.9), where y(x) is the solution to the initial-value problem

$$y' = x^2, \ y(0) = 1.$$

7. Solve the differential equation

$$f'(x) = f(x)(1 - f(x)), \ f(0) = \frac{1}{3}.$$

- 8. Find the Taylor series for $f(x) = \frac{7}{x^4}$ about x = -3.
- 9. Show that the Maclauren series for $\cos(x)$ converges to $\cos x$.
- 10. Estimate $\ln(1.4)$ to be within 0.0005.
- 11. Solve the differential equation $\frac{dv}{dt} = e^{v+2t}$.
- 12. Determine the Taylor Series for $f(x) = x^6 e^{2x^3}$ about x = 0.
- 13. A function y(t) satisfies the differential equation

$$\frac{dy}{dt} = y^4 - 6y^3 + 5y^2.$$

What are the constant solutions of the equation? For what values of y is y(t) increasing? Decreasing? 14. Suppose $\sum_{n=0}^{\infty} c_n x^n$ converges when x = -4 and diverges when x = 6. What can be said about the convergence or divergence of the following series?

(a) $\sum_{n=0}^{\infty} c_n$ (b) $\sum_{n=0}^{\infty} c_n 8^n$ (c) $\sum_{n=0}^{\infty} c_n (-3)^n$ (d) $\sum_{n=0}^{\infty} (-1)^n c_n 9^n$

- 15. How large should n be to estimate e to within six decimal places (0.0000005) using a Taylor polynomial centered at a = 0?
- 16. Determine the value of the sum $\sum_{n=0}^{\infty} \frac{2^n}{n!}$

17. What are the radius and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$?

18. Solve the differential equation

$$\frac{dy}{dx} = \frac{te^t}{y\sqrt{1+y^2}}$$

19. Find the 10th degree Taylor Polynomial centered at a = 1 for the function $f(x) = 2x^2 - x + 1$.

20. Find the sum of the series
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$$

- 21. Sketch the direction field for the differential equation $y' = xy x^2$. Then, sketch the solution curve that passes through the point (0, 1).
- 22. Use a 5th degree Taylor polynomial centered at 0 to estimate $\sin(3^\circ)$. What does Taylor's inequality say about the error?