§6.6 Part II: Center of Mass

Key Points:

- The center of mass (or centroid) of a thin plate is:
- For a system of n particles with masses m_{1}, \ldots, m_{n} located at the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ in the $x y$-plane, the center of mass of the system is located at:
- The moment of the system about the y-axis is

$$
M_{y}=
$$

This measures \qquad

- The moment of the system about the x -axis is

$$
M_{x}=
$$

This measures \qquad

- In the case where we are looking at a thin region bounded by the curves $y=f(x)$ and $y=g(x)$, we chop the region in to small rectangles that we consider to be point masses. In this case:

Examples:

1. Find the moments M_{x} and M_{y} and the center of mass of the system of the following point masses:

- A mass of 6 at the point $(1,5)$
- A mass of 5 at the point $(3,-2)$
- A mass of 10 at the point $(-2,-1)$

2. Find the centroid of the region bounded by the curves $y=\sqrt{x}$ and $y=x$.
3. Find the center of mass of the semicircular plate of radius r.
4. Find the center of mass of the region between the x-axis and the parabola $y=x^{2}+1$ between $x=-2$ and $x=2$.
