§8.5: Power Series

(Created by Faan Tone Liu)

Key Points:

- **A.** What is a **power series**?
 - First Perspective: Inspired by polynomials, we create an "infinite-degree polynomial." For example:
 - Second Perspective: Put a x^n as part of a series. For example:
 - Third Perspective: A power series is a function where x is the input and the output is a series. For example:

A. Basic questions:

- For what x-values dos the power series converge? To answer this question, use the ______. The result is an interval called the **interval of convergence**. Important: Check the endpoints separately.
- To what value does the series converge?

Examples:

1. Consider the series $1 + x + x^2 + \dots + x^n + \dots$. For which values of x does the series converge?

2. Find the interval of convergence of the series $1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \cdots$.

3. Find the interval of convergence of the series $1 - \frac{(x-3)}{2} + \frac{(x-3)^2}{4} - \frac{(x-3)^3}{8} + \cdots$.

4. Find the interval of convergence of the series $\sum_{n=0}^{\infty} n! x^n$.

5. Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(2x+1)^n}{n3^n}$.