§8.4: Part I - Alternating Series

(Thanks to Faan Tone Liu)

Key Points:

- If the terms in a series alternate signs, we call the series an alternating series.
- An alternating series can be written in the form

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n} \quad \text { or } \quad \sum_{n=1}^{\infty}(-1)^{n} b_{n}, \quad \text { where } b_{n} \geq 0 .
$$

(i.e. b_{n} includes no negative terms)

- Alternating series test:

- Note: Recall that to show b_{n} is decreasing, show

$$
\ldots \text { or } \quad \text { or } 工
$$

- Note: If in an alternating series, $\lim _{n \rightarrow \infty} b_{n} \neq 0$, then
- Alternating series remainder test: If $\sum(-1)^{n} b_{n}$ converges by the alternating series test, then

$$
\mid \text { Error }\left|=\left|R_{n}\right|=\right.
$$

Examples:

1. (Alternating Harmonic Series) Does $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converge or diverge?
2. Does $\sum_{n=2}^{\infty} \frac{(-1)^{n} \ln n}{n}$ converge or diverge?
3. Does $\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{e^{n}}$ converge or diverge?
4. Estimate $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{5}}$ using three terms. How accurate is your estimate?
5. How many terms should we add to ensure that our estimate of $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ is within 0.0001 of the true value?
