§8.4: Part I - Alternating Series

(Thanks to Faan Tone Liu)

Key Points:

- If the terms in a series alternate signs, we call the series an **alternating series**.
- An alternating series can be written in the form

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n \quad \text{or} \quad \sum_{n=1}^{\infty} (-1)^n b_n, \quad \text{where } b_n \ge 0.$$

(i.e. b_n includes no negative terms)

• Alternating series test:

_____ Or _____ Or _____

- Note: If in an alternating series, $\lim_{n\to\infty} b_n \neq 0$, then
- Alternating series remainder test: If $\sum (-1)^n b_n$ converges by the alternating series test, then

$$\operatorname{Error}| = |R_n| =$$

Examples:

1. (Alternating Harmonic Series) Does $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converge or diverge?

2. Does
$$\sum_{n=2}^{\infty} \frac{(-1)^n \ln n}{n}$$
 converge or diverge?

3. Does
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{e^n}$$
 converge or diverge?

4. Estimate
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^5}$$
 using three terms. How accurate is your estimate?

5. How many terms should we add to ensure that our estimate of $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ is within 0.0001 of the true value?