§8.4: Absolute Convergence and Ratio Test

(Thanks to Faan Tone Liu)

Key Points:

• If the series $\sum |a_n|$ converges, then the original series $\sum a_n$ converges:

In this case, we say the series $\sum a_n$ is absolutely convergent or converges absolutely. This is a new way to prove series convergence!

- Series that are convergent but are not absolutely convergent are called **conditionally convergent**. One example is
- The **Ratio Test** is another tool we can use. Calculate $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L.$
 - (i) If L < 1, then $\sum a_n$ converges absolutely (and thus converges)
 - (ii) If L > 1, including $+\infty$, then $\sum a_n$ diverges
 - (iii) If L = 1, the ratio test tells you nothing. Try something else.
- Helpful graphic:

	$\sum a_n$ converges	$\sum a_n$ diverges
$\sum a_n $ converges		
$\sum a_n $ diverges		

Examples:

1. Does $\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$ converge or diverge?

2. Does
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
 converge or diverge?

3. Does $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ converge absolutely, converge conditionally, or diverge?

4. Does
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
 converge absolutely, converge conditionally, or diverge?

5. Does $\sum_{n=1}^{\infty} \frac{(-1)^n n!}{e^n}$ converge absolutely, converge conditionally, or diverge?

6. Does
$$\sum_{n=1}^{\infty} \frac{n^n}{(2n)!}$$
 converge absolutely, converge conditionally, or diverge?