§8.2: Series (Thanks to Faan Tone Liu)

Points (Part I):
An infinite series is the sum of the terms of a sequence:
More precisely, an infinite series is related to a special sequence of partial sum
This allows us to see that the sum of an infinite series is:
Graphical perspective (infinite series are related to Riemann sums):
Important tool: Divergence Test:

Examples:

- 1. (Using the divergence test) Does $\sum_{n=1}^{\infty} \frac{e^n}{n^2}$ converge or diverge?
- 2. (Harmonic series) Does $\sum_{n=1}^{\infty} \frac{1}{n}$ converge or diverge?

3. (Telescoping Series) Explicitly calculate the sum of the series $\sum_{i=1}^{\infty} \frac{1}{i(i+1)}$.

Key Points (PartII):

$$\bullet \sum_{n=1}^{\infty} a_n = \underline{\qquad}.$$

- The goal is to determine if $\sum_{n=1}^{\infty} a_n$ converges or diverges. So far, we have a few tools:
 - **Divergence test**. Check if _______. If the limit is not zero, you are done and $\sum_{n=1}^{\infty} a_n$ ______. If $a_n \to 0$, then too bad, we have to do more.
 - We can directly calculate the partial sums $S_N = \sum_{n=1}^N a_n$ for **telescoping series** and take the limit $\lim_{N\to\infty} S_N$ to establish convergence or divergence.
 - Geometric series are our friends! A geometric series has the form
 We know that
 - * $\sum_{i=1}^{n} ar^{i-1} = \underline{\qquad}$. In other words,

 - * If $|r| \ge 1$, then $\sum_{i=1}^{\infty} ar^{i-1}$ ______.
- The harmonic series is . It .
- Other notes:

Examples: For each of these series, write it in expanded form if it is given in Σ -notation, and in Σ -notation if it is given in expanded form. Then, determine if the series converges and if so, find the sum.

Ex A.
$$\sum_{n=0}^{\infty} \left(\frac{\pi}{e}\right)^{n-1}$$

Ex B.
$$\sum_{i=1}^{\infty} \ln \left(\frac{i+1}{i} \right)$$

Ex C.
$$3 + \frac{3}{2} + 1 + \frac{3}{4} + \frac{3}{5} + \frac{3}{6} + \cdots$$

Ex D.
$$\sum_{n=2}^{\infty} 3 \left(\frac{2}{3}\right)^{n-1}$$

Ex E.
$$5 + \sqrt{5} + \sqrt[3]{5} + \sqrt[4]{5} + \cdots$$

Ex F.
$$1 + x + x^2 + x^3 + \cdots$$