§7.5: The Logistic Equation

(Thanks to Faan Tone Liu)

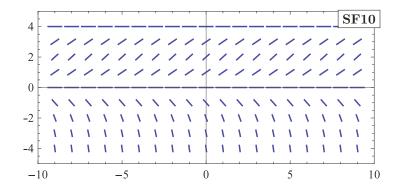
Key Points:

- Review: Often, population growth can be modeled by P' = kP. The solution is ______, and this situation is called ______.
- Exponential growth is not realistic in the long run because $\lim_{t\to\infty} P(t) = \underline{\hspace{1cm}}$, so we modify it to get the **Logistic Equation**

$$\frac{dP}{dt} =$$

where M is a constant that represents the carrying capacity of the population. The solution is

• The slope field for the logistic growth equation is



- Miscellaneous observations:
 - If P is small, then $\frac{dP}{dt} \approx$ _____ (basically exponential growth).
 - If $P \approx M$, then $\frac{dP}{dt} \approx$ _____ (growth slows to 0).
 - Equilibrium (constant) solutions are: _____
 - If the population starts between 0 and M: $\lim_{t\to\infty} P(t) =$ _____.
 - Using Calc I methods, we can show that P(t) has an inflection point when _____.

Examples:

1. (Review of exponential growth) Solve the differential equation P' = kP.

2. Solve the logistic differential equation $P' = kP\left(1 - \frac{P}{M}\right)$.

3. Suppose a population grows according to the logistic model with an initial population of 1000 and a carrying capacity of 10,000. If the population grows to 2500 after one year, what is the population after three more years?