Background knowledge:

In the following statement, $f(x)$ is a function, $T_{n}(x)$ is its n th-degree Taylor polynomial centered at a, and the remainder $R_{n}(x)=f(x)-T_{n}(x)$.
Taylor's Inequality: If $f^{(n+1)}$ is continuous and $\left|f^{(n+1)}\right| \leq M$ between a and x, then:

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

1. In this first example, you know the degree n of the Taylor polynomial, and the value of x, and will find a bound for how accurately the Taylor Polynomial estimates the function.
(a) Write down the 2nd degree Taylor Polynomial for $f(x)=e^{x}$ centered at $a=0$.
(b) If we want to use the Taylor Polynomial above to estimate e, what should x be?
(c) Use the Taylor Polynomial from part (a) to estimate e.
(d) Find an upper bound for $f^{\prime \prime \prime}(x)$ for x between a and the value at which we are estimating the function, that is, between 0 and 1 . This is what we call M.
(e) Write down the error bound for $R_{2}(x)$, filling in values for x, a, n and M. What does this say about the accuracy of your estimate in part c ?
2. In this problem you'll know the value of x and the accuracy you're going for, and you will find how large a degree n for the Taylor Polynomial is needed.
(a) Say that you want to estimate e to within 0.1. How many terms of the Taylor series do you need to add up? This time first find a bound M for $f^{(n+1)}(x)$ between a and x (notice you need to do this for arbitrary n). Then write down the error bound for $R_{n}(x)$, filling in values for x, a and M. Set this error bound to be less than 0.1 and solve for n.
(b) Add the number of terms you found were needed to get an estimate of e to within 0.1.
3. In this problem you'll know the degree n of the Taylor Polynomial and the accuracy you're going for, and you will find out how large x can be. Using the 5th degree Taylor Series for $\sin x$ centered at $a=0$ to estimate $\sin x$, how large can x be to get an estimate within .0005 ?
4. In this problem you show that a Taylor Series for a function actually converges to the function. Show that the Taylor Series for $f(x)=\sin x$ converges to $\sin x$ for all x. This background information will be useful:

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \text { for all } x
$$

Outline of strategy:

- Get an upper bound M for $\left|f^{(n+1)}(x)\right|$ on the interval from a to x.
- Write down the nth degree error bound for $R_{n}(x)$.
- Take the limit of this bound for $R_{n}(x)$ as $n \rightarrow \infty$, show it is 0 , for all x.
- State the conclusion:

More practice:
5. (a) Find the Taylor Series directly (using the formula for Taylor Series) for $f(x)=\ln (x+1)$, centered at $a=0$.
(b) How accurate will the estimate be if we use this series to estimate $\ln 4$ with $n=5$?
(c) Show that this series converges to $\ln (x+1)$ on the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$. Note: do not use the ratio test, since it only shows convergence of the series, not convergence to the correct function. Instead, show that the limit of the error term is 0 .
(d) For $x=\frac{1}{4}$, what degree Taylor polynomial do we need to use to guarantee an approximation correct to within 4 decimal places (that is, to within .00005)?
6. Show that the 6 th degree Taylor Polynomial for $\cos x$, centered at 0 , gives values which are accurate to at least four decimal places (to within .00005) if $|x|<1$.
7. Find $\sin \left(35^{\circ}\right)$ to within 3 decimal places (to within .0005). Note that you have options here about where to place the center a.

