

\square

$$
\frac{d y}{d x}=x-y
$$

$$
\frac{d y}{d x}=\frac{x}{y}
$$

$$
\frac{d y}{d x}=y-x
$$

$\frac{d y}{d x}=x$	

	DE7
$\frac{d y}{d x}=\frac{y}{2}$	

Substituting into the differential equation verifies that $y=\sqrt{4-x^{2}}$ is a solution.

The solution curve that passes through the point $(0,-1)$ is the line $y=x-1$.

The solution curve that passes through the point $(-1,0)$ is the line $y=-x-1$.

There is exactly one equilibrium solution and it is unstable.

$$
\text { local maximum at }(1,1) \text {. }
$$

For $0<y<4$, the solution curves are logistic and have two horizontal asymptotes.

The solution curves have a vertical asymptote at $x=0$.

