The Comparison Test

Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.

- If $\sum b_{n}$ converges and $a_{n} \leq b_{n}$, then $\sum a_{n}$ also converges.
- If $\sum b_{n}$ diverges and $a_{n} \geq b_{n}$, then $\sum a_{n}$ also diverges.

The Limit Comparison Test

Suppose $a_{n}>0$ and $b_{n}>0$ for all n. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$, where c is finite and $c>0$, then the two series $\sum a_{n}$ and $\sum b_{n}$ either both converge or both diverge.

Each of the following series can be proven to converge or diverge by comparing to a known series. For some of these series you can compare the term-size to get a result. For others, simple comparison doesn't work quite right and instead you must use the Limit Comparison Test. For each of the following, determine what known series to compare to, and which test should be used. Use that test to show convergence or divergence of the series.

1. $\sum_{n=1}^{\infty} \frac{\arctan n}{2^{n}}$
2. $\sum_{n=1}^{\infty} \frac{\arctan n}{\sqrt{n}}$
3. $\sum_{n=1}^{\infty} \frac{1}{e^{n}+n^{2}}$
4. $\sum_{n=1}^{\infty} \frac{1}{e^{n}-n^{2}}$
5. $\sum_{n=1}^{\infty} \frac{3 n-2}{2 n^{3}+5}$
6. $\sum_{n=1}^{\infty} \frac{n^{2}-n+5}{n^{3}-3 n+6}$
