Goal: If we know that a power series converges to a specific function, we can manipulate the equation to determine the limits of new power series. This is a nifty and fast way to get lots of new power series representations of functions. Today we will manipulate power series in these ways:

- Substitute
- Multiply by x
- Differentiate
- Integrate

1. Write down a power series representation for the function $f(x)=\frac{1}{1-x}$ by using the fact that the geometric series $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$. Write your answer in both expanded form and Σ-notation. On what interval does the series converge to the function?
2. Using your response for the last problem, substituting $-x$ in the place of x, find the power series representation for $f(x)=\frac{1}{1+x}$. Write your answer in both expanded form and Σ notation. On what interval does the series converge to the function?
3. Find the power series representation for $f(x)=\frac{1}{1+x^{2}}$. Write your answer in both expanded form and Σ-notation. On what interval does the series converge to the function?
4. Find the power series representation for $\frac{x}{1-x}$. (Hint: multiply answer to problem 1 by x.) On what interval does the series converge to the function?
5. Find the power series representation for $\frac{1}{(1-x)^{2}}$. On what interval does the series converge to the function? Hint: Take the derivative of both sides of this equation:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots+x^{n}+\ldots=\sum_{n=0}^{\infty} x^{n}
$$

6. Find the power series representation of $\arctan x$. (Hint: start with the power series for $\frac{1}{1+x^{2}}$ and antidifferentiate. Solve for the constant of integration by substituting $x=0$.) On what interval does the series converge to the function?
