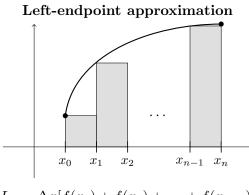
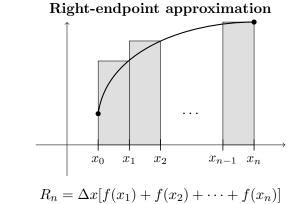
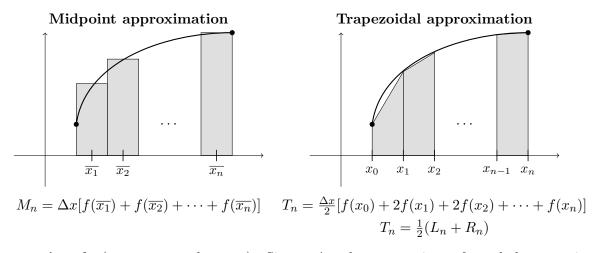
Background info, approximating $\int_{a}^{b} f(x) dx$.

For each method, the subintervals are uniform. That is, $a = x_0$, $b = x_n$, and $\Delta x = \frac{b-a}{n}$.

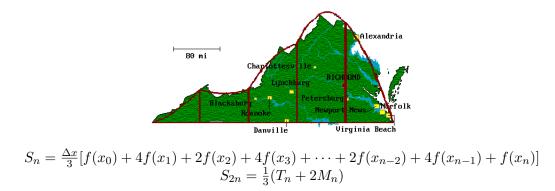


 $L_n = \Delta x [f(x_0) + f(x_1) + \dots + f(x_{n-1})]$





Simpson's rule (note, *n* must be even). Simpson's rule uses sections of parabolas to estimate areas. For more about this image see http://www.maa.org/publications/periodicals/loci/joma/estimating-the-area-of-virginia-using-simpsons-rule



1. Values of f(x) are given in the table below:

x	5	7	9	11	13	15	17
f(x)	-2	0	1	3	4	5	8

Estimate $\int_{5}^{17} f(x) dx$ using the following methods, if possible.

With n = 3, $L_n =$

With n = 6, $R_n =$

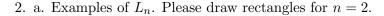
With n = 6, $T_n =$

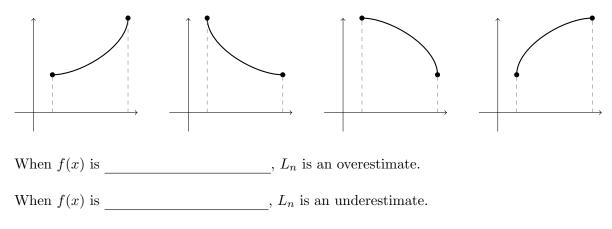
With n = 6, $M_n =$

With n = 3, $M_n =$

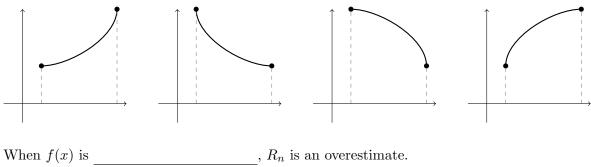
With $n = 3, S_n =$

With $n = 6, S_n =$



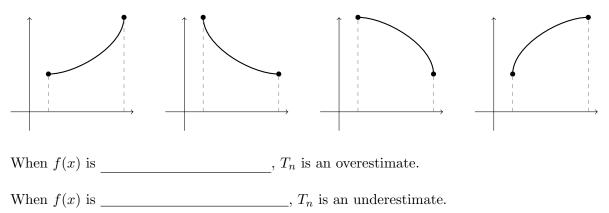


b. Examples of R_n . Please draw rectangles for n = 2.



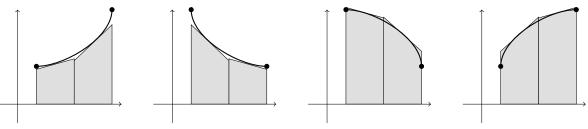
When f(x) is ______, R_n is an overestimate. When f(x) is ______, R_n is an underestimate.

c. Examples of T_n . Please draw trapezoids for n = 2.



2. d. Examples of M_n , with n = 2.

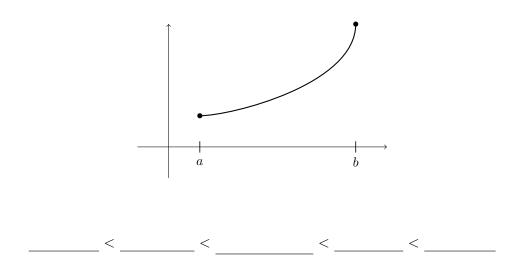
By 'rotating' the top edge of the rectangles of a Midpoint approximation, we can draw them as trapezoids.



When f(x) is ______, M_n is an overestimate.

When f(x) is M_n is an underestimate.

3. For f(x) shown below, put L_n , R_n , M_n , T_n and $\int_a^b f(x) dx$ in order from smallest to largest.



Background info, error bounds (see p.405 in the textbook).

Suppose $|f''(x)| \leq k$ for $a \leq x \leq b$. If E_T and E_M are the errors in the trapezoidal and midpoint approximations, then

 $|E_T| \le \frac{k(b-a)^3}{12n^2}$ and $|E_M| \le \frac{k(b-a)^3}{24n^2}$

Example 1: If we use the trapezoidal approximation with n = 10 to estimate $\int_{1}^{3} x^{3} dx$, how accurate are we guaranteed to be? (If you want, make a guess before you do the calculation.)

$$f(x) = x^{3}$$

$$f'(x) = \underline{\qquad}$$

$$f''(x) = \underline{\qquad}$$
On [1, 3], $|f''(x)| \leq \underline{\qquad}$, because
So, $|E_{T}| \leq$
(Is this more or less accurate than you guessed?)

Example 2: If we use the midpoint approximation with n = 20 to estimate $\int_0^1 \sin(2x) dx$, how accurate are we guaranteed to be?

Example 3: How large should n be to guarantee that using T_n to estimate $\int_0^1 e^{-3x} dx$ gives an error no larger than 0.001?