## Math 2300-013: Solids of Revolution

## Suggested Steps:

1. Sketch the region and axis about with the region is rotated
2. Decide on $d x$ or $d y$ and draw a tiny rectangle:
3. Sketch a cross-section:
4. Find the change in volume, $d V$. (Substitute so all of the "pieces" are in $x$ for a $d x$ integral or $y$ for a $d y$ integral.)
5. Use an integral to sum up the volumes of the cross-sections. (Slide the rectangle you drew in Step 2 along to find the limits on your integral.)

## Examples:

1. In this example, we will find the volume of the sphere of radius $r$. Let $\mathcal{R}$ be the region bounded by the semicircle $y=\sqrt{r^{2}-x^{2}}$ and the $x$-axis. Find the volume of the solid generated by rotating $\mathcal{R}$ around the $x$-axis.

Method I: Washers/Disks:

## Method II: Shells:

2. Let $\mathcal{R}$ be the region bounded by the curves $y=2 \sin x$ and $y=\tan x$ in the interval $[0, \pi / 2)$. Find the volume of the solid formed by rotating $\mathcal{R}$ around
(a) the line $y=-2$;
(b) the line $x=-1$.
