
Series - summing it all up
Here’s a list of all of the convergence tests for series that you know so far:
• Divergence test (a.k.a. n-th term test)
• Geometric series test
• Telescoping series
• Integral test
• p-series (including harmonic series)
• Term-size comparison test (also known as “The Comparison Test” or “Direct Comparison Test”)
• Limit comparison test
• Alternating series test
• Absolute convergence implies convergence
• The Ratio test
• Remainder estimates for integral test and alternating series

Here are the details:

The Divergence test: When you’re given a series
∑∞

n=1 an, first check the limit of the underlying
sequence. If lim

n→∞
an 6= 0, then you can conclude that the given series

∑∞
n=1 an diverges. If lim

n→∞
an = 0,

you can’t conclude anything yet and you have to do more work.

Geometric series test: You can recognize a geometric series because it is built from an exponential
sequence. An infinite geometric series generally has the form

∑∞
n=1 ax

n−1. An infinite geometric series
diverges if |x| ≥ 1, and converges if |x| < 1. If an infinite geometric series converges, it converges to a

sum of
a

1− x
. (Finite geometric series always converge, don’t forget we have a special formula for their

sums.)

Telescoping series: Telescoping series can be written in the form
∑∞

i=1 (ai − ai+1). Write out the nth
partial sum to see that the terms cancel in pairs, collapsing to just a1− an+1. Take the limit to see if the
series converges or diverges.

The Integral test: (for positive term series only) Generally, this is our last resort, because to use
it we must evaluate the corresponding improper integral, and also make sure the corresponding function
is decreasing and positive.
Suppose an = f(n), where f(x) is continuous, decreasing and positive.

• If
∫∞
1

f(x)dx converges, then
∑∞

n=1 an converges.

• If
∫∞
1

f(x)dx diverges, then
∑∞

n=1 an diverges.

Remainder Estimate for the Integral Test: If you can use the Integral Test to show a series is
convergent, then you can get a bound for how accurately the nth partial sum estimates the sum of the
series: Suppose an = f(n),where f is a continuous, positive decreasing function for x ≥ n, and

∑
an is

convergent. If Rn = S − Sn, then ∫ ∞
n+1

f(x) dx ≤ Rn ≤
∫ ∞
n

f(x) dx

p-series: The series
∑∞

n=1
1
np converges if p > 1 and diverges if p ≤ 1. If p = 1 we have the harmonic

series
∑∞

n=1
1
n
, which diverges.



Term-size comparison test: (for positive term series only)
Suppose that

∑
an and

∑
bn are series with positive terms

• If
∑

bn converges, and an ≤ bn for all n beyond a certain value, then
∑

an also converges.
• If

∑
bn diverges, and an ≥ bn for all n beyond a certain value, then

∑
an also diverges.

Limit comparison test: (for positive term series only)
Suppose an > 0 and bn > 0 for all n. If

lim
n→∞

an
bn

= c

where c is finite and not zero, then the two series
∑

an and
∑

bn either both converge or both diverge.

Alternating series test:
The terms in an alternating series alternate signs. They have the form

∑∞
n=1(−1)n−1an (if the first term

is positive) or
∑∞

n=1(−1)nan (if the first term is negative), where an > 0. If 0 < an+1 ≤ an for all n (i.e.,
the sequence is decreasing) and lim

n→∞
an = 0, then the series converges.

Remainder estimate for alternating series:
If you have an alternating series for which you can use the alternating series test to show convergence,
then you can get a bound for how accurately the nth partial sum estimates the sum of the series:

Let Sn =
n∑

i=1

(−1)i−1ai be the nth partial sum of an alternating series and let S = lim
n→∞

Sn be the sum of

the infinite series. Suppose that 0 < an+1 ≤ an for all n and that lim
n→∞

an = 0. Then

Rn = |S − Sn| < an+1

Absolute convergence implies convergence:
If we have a series

∑∞
n=1 an that has a mix of negative and positive terms, but that doesn’t necessarily

alternate, sometimes it is useful to consider
∑∞

n=1 |an|. Here’s why:

If
∑∞

n=1 |an| converges, then so does
∑∞

n=1 an.

We call a series absolutely convergent when
∑∞

n=1 |an| converges. Thus, if a series is absolutely convergent,
it must also be convergent. We call a series conditionally convergent if

∑∞
n=1 an converges, but

∑∞
n=1 |an|

diverges.
So there are three distinct possibilities for a series: it either converges absolutely, converges conditionally,
or diverges.

The Ratio test: Suppose you calculate the following limit, and

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L

• If L < 1, then
∑∞

n=1 an converges absolutely.

• If L > 1 (including if L =∞), then
∑∞

n=1 an diverges.

• If L = 1, we can make no conclusion about the series using this test.

The ratio test is typically useful if a series has geometric components and/or factorial components,
possibly mixed with power functions. It will be extremely important in determining convergence of
power series.


