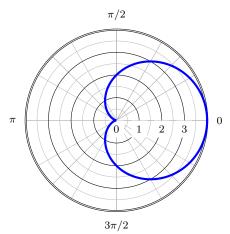

- 1. Plot each of the following points on the graph below:
 - (a) $(r, \theta) = (3, \frac{7\pi}{6})$
 - (b) $(r, \theta) = (2, -\frac{3\pi}{4})$ (c) $(r, \theta) = (-1, \frac{5\pi}{4})$
 - (d) $(r, \theta) = (4, \pi)$

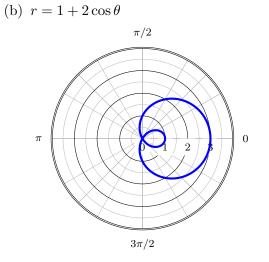
- 2. Convert (2, -2) to polar coordinates. Give two possible answers. **Solution:** $r = \sqrt{2^2 + 2^2} = 2\sqrt{2}$, and $\theta = \arctan\left(\frac{-2}{2}\right) = -\frac{\pi}{4}$. So we have $(r, \theta) = (2\sqrt{2}, -\frac{\pi}{4})$. Another possibility is $(2\sqrt{2}, \frac{7\pi}{4})$, or $(-2\sqrt{2}, \frac{3\pi}{4})$.
- 3. Give rectangular coordinates for these points:
 - (a) $(r, \theta) = (3, \frac{5\pi}{4})$ Solution: $(-\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2})$
 - (b) $(r, \theta) = (-4, \frac{11\pi}{6})$

Solution: $(-2\sqrt{3}, 2)$

- 4. Convert the following to rectangular coordinates:
 - (a) r = 8


Solution: $r^2 = 64$, so $x^2 + y^2 = 64$

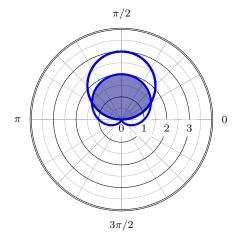
(b) $r = 2 \sec \theta$


Solution: $r \cos \theta = 2$, so x = 2, which is a vertical line.

- 5. Convert the following to polar coordinates:
 - (a) $x^2 + y^2 = 25$ Solution: r = 5(b) y = 2xSolution: $\frac{y}{x} = 2$, so $\theta = \arctan 2$.

- 6. Graph the following polar equations. Note any values of θ where the graph hits the origin.
 - (a) $r = 2 + 2\cos\theta$

Solution: The graph hits the origin at $\theta = \pi$.



Solution: The graph hits the origin at $\theta = \frac{2\pi}{3}$ and $\theta = \frac{4\pi}{3}$.

Solution: The graph hits the origin at $\theta = \frac{\pi}{2}$ and $\theta = \pi$, $\theta = \frac{3\pi}{2}$, and $\theta = 2\pi$.

7. Shade the region that lies inside both of the curves $r = 1 + \sin \theta$ and $r = 3 \sin \theta$. Find the intersection points.

Solution: The graphs intersect at $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$.