
MA 2300 Power Series Practice Problems MA 2300

1. What is the Maclaurin series of f(x) =
2

(1 + x)3
?

A)
+∞∑
n=0

(−1)n
(n+ 1)(n+ 2)

2
xn

B)
+∞∑
n=0

(−1)n (n+ 1)(n+ 2)xn X

C)
+∞∑
n=0

(−1)n−1 (n+ 1)(n+ 2)

2
xn

D)
+∞∑
n=0

(−1)n (n+ 1)(n+ 2)xn

E)
+∞∑
n=0

(n+ 1)(n+ 2)

2
xn

2. If the Maclaurin series of a fuction f(x) is
+∞∑
n=1

(−1)n
xn

3n(n+ 6)

then f (6)(0) is equal to

A)
5

3
B)

5

2
C)

10

3
X D)

9

7
E)

8

5
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3. Find the interval of convergence of
+∞∑
n=1

(−1)n3n

n
√
n

xn

A) [0, 1/3]

B) (−1/3, 1/3)

C) [−1/3, 1/3)

D) (−1/3, 1/3]

E) [−1/3, 1/3] X

4. Calculate the first non-zero term of the Maclaurin series of f(x) = ln(secx)

A)
x2

2
X B) −

x2

2
C) x2 D) −x2 E)

x3

6
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5. Knowing that the Maclaurin series of ln(1 + x) is given by

ln(1 + x) =

+∞∑
n=1

(−1)n−1x
n

n

find the smallest number of terms of the series that one needs to add to compute ln(1.1)
with an error less than or equal to 10−8.

A) 8 B) 3 C) 5 D) 9 E) 7 X

6. The Maclaurin series for f(x) =
x

(1 + x2)2
is:

A)
∞∑

n=1

(−1)nx2n

B)
∞∑

n=1

(−1)n2nx2n−1

C)
∞∑

n=1

(−1)nnx2n−1

D)
∞∑

n=1

(−1)n+1nx2n−1 X

E)
∞∑

n=1

(−1)n

2n+ 1
x2n+1
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7. Find the first three terms of the Taylor series for f(x) = cosx about a =
π

3
,

A)
1

2
−
√
3

2

(
x−

π

3

)
−

1

4

(
x−

π

3

)2

X

B)
1

2
+

√
3

2

(
x−

π

3

)
+

1

4

(
x−

π

3

)2

C)
1

2
−
√
3

2

(
x−

π

3

)
−

1

2

(
x−

π

3

)2

D)
1

2
+

√
3

2

(
x−

π

3

)
−

1

4

(
x−

π

3

)2

E)
1

2
−
√
3

2

(
x−

π

3

)
+

1

2

(
x−

π

3

)2

8. Use the first two non-zero terms of the Maclaurin series of ln(cosx) to estimate

∫ 1

0
ln(cosx) dx

A)
1

5
B) −

1

5
C)

1

6
D)

11

60
E) −

11

60
X
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9. If we compute the sum of the fewest terms necessary to guarantee that the error is less
than 0.05, using Estimation Theorem for Alternating Series, then what is the estimate for
e−1?

A)
11

8
B)

3

8
C)

3

7
D)

2

5
E)

1

3
X

10. Suppose that the series
+∞∑
n=1

cn(x− 3)n converges when x = 1 and diverges when x = 7.

From the above information, which of the following statements can we conclude to be true?

I. The radius of convergence is R ≥ 2.

II. The power series converges at x = 4.5

III. The power series diverges at x = 6.5

A) I and II only X

B) I and III only

C) II and III only

D) All of them

E) None of them
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11. Find the coefficient of x6 in the power series expansion of
2

1 + 2x2

A) 8 B) −8 C) 32 D) −16 X E) −64

12. The power series representation (centered at a = 0) and the interval of convergence for

f(x) = ln(4− x2) are:

A) −
+∞∑
n=0

x2n+2

(2n+ 2)4n+1
I = (−2, 2)

B) −2
+∞∑
n=0

x2n+2

(2n+ 2)4n+1
I = (−2, 2)

C) −2
+∞∑
n=0

x2n+2

(2n+ 2)4n+1
+ ln 4 I = (−2, 2) X

D) −2
+∞∑
n=0

x2n+2

(2n+ 2)4n+1
+ ln 4 I = [−2, 2)

E) −
1

2

+∞∑
n=0

x2n+2

(2n+ 2)4n+1
+ ln 4 I = (−2, 2)
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13. Using Maclaurin series and EstimationTheorem for alternating series, we can obtain the
approximation ∫ 0.1

0

1

1 + x2
dx ≈ 0.1−

(0.1)3

3
with error ≤ c

The value of c is

A) (0.1)3 B) (0.1)5 C) (0.1)7 D)
(0.1)3

3!
E)

(0.1)5

5
X

14. Find the coefficient of x5 in the power series expansion of
x2 + 1

x− 2

A) −
1

64
B)

3

64
C) −

3

64
D)

5

64
E) −

5

64
X
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15. Find the interval of convergence for the Taylor series
+∞∑
n=0

3n

nn
(x− 5)n

A)

(
−

1

3
,
1

3

)
B)

(
14

3
,
16

3

)
C)

(
15− e

3
,
15 + e

3

)
D)

(
15− e

3
,
15 + e

3

]
E) (−∞,∞) X

16. Which of the following is the interval of convergence of the power series
+∞∑
n=1

(−1)n
n2(x− 2)n

3n(n3 + 2)

A) (0, 6) B) [0, 6) C) (−1, 5] X D) [−1, 5) E) [−1, 5]
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17. Let f(x) be the function which is represented by the power series

f(x) =

+∞∑
n=1

(−1)n
(x− 1)n

n3

The fifth derivative of f at x = 1 is

A)
1

2
B) −

37

81
C) −

24

25
X D)

25

96
E)

1

4

18. Find the coefficient of x4 of the Maclaurin series of f(x) =
√
1 + x

A)
1

57
B) −

75

128
C) −

5

128
X D)

8

57
E)

9

77



MA 2300 Power Series Practice Problems MA 2300

19. Find the Taylor series of f(x) =
1

5− x
centered at a = 1

A)
+∞∑
n=0

(x− 1)n

5n

B)
+∞∑
n=0

(x− 1)n

5n+1

C)
+∞∑
n=0

(x− 1)n

5nn!

D)
+∞∑
n=0

(x− 1)n

4n+1
X

E)
+∞∑
n=0

(x− 1)n

4n

20. Find the Maclaurin series of

∫
x2 sinx dx

A)
+∞∑
n=0

(−1)n
x2n+3

(2n+ 3)!

B)
+∞∑
n=0

(−1)n
x2n+3

(2n+ 1)!

C)
+∞∑
n=0

(−1)n
x2n+3

(2n+ 3)(2n+ 1)!

D)
+∞∑
n=0

(−1)n
x2n+4

(2n+ 4)(2n+ 1)!
X

E)
+∞∑
n=0

(−1)n
x2n+4

(2n+ 4)!(2n+ 1)!
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21. Find the Maclaurin series of f(x) =
1

(1− x)4

A)
+∞∑
n=3

(−1)n
n(n− 1)(n− 2)

6
xn−3

B)
+∞∑
n=3

n(n− 1)(n− 2)

6
xn−3 X

C)
+∞∑
n=2

(−1)nn(n− 1)xn−2

D)
+∞∑
n=2

xn−2

n(n− 1)

E)
+∞∑
n=2

xn−2

2n(n− 1)

22. Use a Taylor polynomial to approximate

∫ 1

0
e−x3

dx with error less than 0.01. The smallest

number of terms that are needed for this accuracy is

A) 2 B) 3 X C) 4 D) 5 E) 6
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23. Determine the sum of the series
∞∑

n=0

(−1)n

(2n+ 3)(2n+ 1)

A)
π

2
B)

π − 2

4
X C)

π − 1

4
D)

π − 4

4
E)

π

6

24. The first 4 nonzero terms in the Maclaurin series of f(x) = (4 + x)3/2 are:

A) 8 + 3x−
3x2

8
+
x3

16

B) 8 + 3x+
3x2

16
−

x3

128
X

C) 1 +
3x

2
+

3x2

4
−

3x3

8

D) 1 +
3x

2
+

3x2

8
−
x3

8

E) 1 +
3x

2
−

3x2

16
+
x3

64
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25. Suppose that the power series
∞∑

n=0

cn(x− 5)n

converges when x = 2 and diverges when x = 10.

From the above information, which of the following statements can we conclude to be true?

I: The radius of convergence R satisfies 3 ≤ R ≤ 5.

II: We can NOT determine the interval of convergence from the above information only.

III: The derivative of the power series is
∞∑

n=1

ncn(x− 5)n−1, which converges when x = 3.

A) I and II only

B) I and III only

C) II and III only

D) All of them X

E) None of them


