
MATH 1300 Lecture Notes Monday, December 9, 2013

Section 6.4: Second Fundamental Theorem of Calculus

Let f(x) be a function defined on an interval I. Suppose we want to find an antiderivative
F (x) of f(x) on the interval I. Sometimes, we are able to find an expression for F (x) analyti-
cally. For example, if f(x) = x2, then we can take F (x) = x3

3
. However, there are elementary

functions f(x) (functions that are combinations of constants, powers of x, sinx, cosx, ex, and
lnx) that do not have an antiderivative F (x) that can be expressed as an elementary function.
One such example of an elementary function that does not have an elementary antiderivative
is f(x) = sin(x2).

The Second Fundamental Theorem of Calculus studied in this section provides us with
a tool to construct antiderivatives of continuous functions, even when the function does not
have an elementary antiderivative:

Second Fundamental Theorem of Calculus. Let f be a continuous function defined
on an interval I. Fix a point a in I and define a function F on I by

F (x) =

∫ x

a

f(t)dt.

Then F is an antiderivative of f on the interval I, i.e. F ′(x) = f(x) on I.

A proof of the Second Fundamental Theorem of Calculus is given on pages 318–319 of
the textbook.

We note that F (x) =
∫ x
a
f(t)dt means that F is the function such that, for each x in the

interval I, the value of F (x) is equal to the value of the integral
∫ x
a
f(t)dt. Furthermore,

F (a) =
∫ a
a
f(t)dt = 0, and so F is the anitderivative of f that satisfies F (a) = 0.

Now since
∫ x
a
f(t)dt is an antiderivative of f(x), then the general form of an antiderivative

of f(x) is given by

F (x) = C +

∫ x

a

f(t)dt,

where C is a constant. In this case, we compute

F (a) = C +

∫ a

a

f(t)dt = C + 0 = C.

Therefore we have the result that the general form of an antiderivative of f(x) is given by

F (x) = C +

∫ x

a

f(t)dt, where C = F (a).

We also note that the fact that
∫ x
a
f(t)dt is an antiderivative of f(x) in the Second

Fundamental Theorem of Calculus can be expressed as

d

dx

∫ x

a

f(t)dt = f(x).
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Example 1. Let f(x) = sin(x2). Then the function

F (x) =

∫ x

0

sin(t2)dt

is the antiderivative of f that satisfies F (0) = 0. For every real number x, we can find the
value of F (x) by computing numerically the integral

∫ x
0

sin(t2)dt. We give a few values of F
in the table below:

x -3 -2 -1 0 1 2 3
F (x) -0.7736 -0.8048 -0.3103 0 0.3103 0.8048 0.7736

We remark that the table suggests that F is an odd function, i.e. F (−x) = −F (x).
Indeed, since the function f(t) = sin(t2) is even (as f(−t) = sin((−t)2) = sin(t2) = f(t)), we
must have, following a result from Section 5.4, that∫ 0

−x
sin(t2)dt =

∫ x

0

sin(t2)dt.

From here,

F (−x) =

∫ −x
0

sin(t2)dt = −
∫ 0

−x
sin(t2)dt = −

∫ x

0

sin(t2)dt = −F (x),

and so F is an odd function.

Example 2. Suppose we know that the function f(x) is such that f ′(x) = e−x
2

and
f(0) = 2. Then an expression for f(x) is given by

f(x) = 2 +

∫ x

0

e−t
2

dt.

If we are asked to find the value of f(3), we have

f(3) = 2 +

∫ 3

0

e−t
2

dt = 2 + 0.8862 = 2.8862,

where the above integral is computed numerically.

Example 3.

(a) Find
d

dx

∫ x

2

ln(t2 + 1)dt.

A direct application of the Second Fundamental Theorem of Calculus yields

d

dx

∫ x

2

ln(t2 + 1)dt = ln(x2 + 1).

(b) Find
d

dt

∫ π

t

cos(z3)dz.

First, we need to switch the limits of integration, and then we apply the Second Funda-
mental Theorem of Calculus:

d

dt

∫ π

t

cos(z3)dz =
d

dt

(
−
∫ t

π

cos(z3)dz

)
= − d

dt

∫ t

π

cos(z3)dz = − cos(t3).
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(c) Find
d

dx

∫ x3

2

sin(t2)dt.

Let G(x) =

∫ x

2

sin(t2)dt. Then, by the Second Fundamental Theorem of Calculus,

G′(x) =
d

dx

∫ x

2

sin(t2)dt = sin(x2).

Since

∫ x3

2

sin(t2)dt = G(x3), we are asked to find
d

dx

(
G(x3)

)
. By the chain rule,

d

dx

(
G(x3)

)
= 3x2G′(x3).

Hence

d

dx

∫ x3

2

sin(t2)dt =
d

dx

(
G(x3)

)
= 3x2G′(x3) = 3x2 sin((x3)2) = 3x2 sin(x6).

(d) Find
d

dt

∫ cos t

t2

√
1 + x4dx.

We start by breaking up the integral in two and then switching the limits of integration
in the first integral:∫ cos t

t2

√
1 + x4dx =

∫ 0

t2

√
1 + x4dx+

∫ cos t

0

√
1 + x4dx = −

∫ t2

0

√
1 + x4dx+

∫ cos t

0

√
1 + x4dx.

Let G(t) =

∫ t

0

√
1 + x4dx. Then we can write

∫ cos t

t2

√
1 + x4dx = −

∫ t2

0

√
1 + x4dx +

∫ cos t

0

√
1 + x4dx = −G(t2) + G(cos t).

By the chain rule,

d

dt

∫ cos t

t2

√
1 + x4dx =

d

dt

(
−G(t2) + G(cos t)

)
= −2tG′(t2)− (sin t)G′(cos t).

By the Second Fundamental Theorem of Calculus, we have

G′(t) =
d

dt

∫ t

0

√
1 + x4dx =

√
1 + t4.

Hence
d

dt

∫ cos t

t2

√
1 + x4dx = −2tG′(t2)− (sin t)G′(cos t)

= −2t
√

1 + (t2)4 − (sin t)
√

1 + (cos t)4 = −2t
√

1 + t8 − (sin t)
√

1 + (cos t)4.
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