
MATH 1300

Section 6.2 - Constructing Antiderivatives Analytically

Goal: Given a formula for f(x), we want to find a formula for F (x) such that F ′(x) = f(x) – such
an F (x) is known as the antiderivative.

We begin with the most basic case, the identically zero function. We would expect such a function to
have a horizontal tangent line everywhere, meaning it is impossible for the function to be increasing or
decreasing at any point on its domain. This gives the following result:

Propostion. The Antiderivative of the Zero Function.

If F ′(x) = 0 on the interval (a, b), then F (x) = C on [a, b], for some constant C.

Proof. This is a reformulation of the Constant Function Theorem from section 3.10.

We also notice that if F (x) is an antiderivative of f(x), then so is F (x) +C for any constant C – after
all, the derivative of a constant is identically zero, so the derivative of either formula will still give f(x).
We can express this idea more formally in the following way:

Propostion. If F,G are both antiderivatives of f on an interval, then F (x) = G(x) + C, where C is a
constant.

Proof. Since F ′ = f and G′ = f , we have F ′ = G′. Thus, F ′ − G′ = 0, and therefore (F − G)′ = 0 by
the difference rule for derivatives. But then F −G = C, so F (x) = G(x) + C.

Because all antiderivatives of f(x) are of the form F (x)+C, it makes sense to come up with notational
shorthand for this family of functions. As the antiderivative is closely tied to the notion of integration,
we adopt notation very similar to that of the integral itself.

Definition. The indefinite integral of a function, f , is denoted

∫
f(x) dx. Furthermore,

∫
f(x) dx =

F (x) + C, where F is an antiderivative of f .

WARNING: Do NOT confuse

∫ b

a

f(x) dx and

∫
f(x) dx. The first is a number, whereas the latter

is a family of functions. Complicating matters, the word “integration” is frequently used interchangeably
for both the process of taking a definite integral and for the process of finding an antiderivative. Context
will usually clarify which meaning is intended.

Using this new notation, we can more quickly describe the antiderivatives of entire families of functions.
But first, a quick motivating example:
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Example 1. Find

∫
5 dx.

Solution. We know that a constant value is left after differentiating a linear formula. This would suggest
we want an equation of a line, 5x. But since we want to denote the whole family of functions whose
derivative is 5, we write ∫

5 dx = 5x + C,

where C is any constant.

Check:
d

dx
(5x + C) = 5 + 0 = 5, as desired.

This suggests the following:

Propostion. The Antiderivative of a Constant.

If k is a constant, then ∫
k dx = kx + C,

where C is any constant.

Proof. If k is a constant, then
d

dx
(kx + C) = k

d

dx
(x) + 0 = k.

In fact, all of our old differentiation rules have corresponding antidifferentiation rules – if we can
recognize the function as a derivative, we automatically know its antiderivative.

For all of the following, C is an arbitrary constant.

Propostion. The Reverse Power Rule.

If n 6= −1, then ∫
xn dx =

xn+1

n + 1
+ C.

Proof. If n 6= −1, then n + 1 6= 0. So

d

dx

(
xn+1

n + 1
+ C

)
=

1

n + 1

d

dx
(xn+1) + 0 =

1

n + 1
· (n + 1)xn = xn.

Propostion. The Antiderivative of 1
x . ∫

1

x
dx = ln |x|+ C.
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Proof. If x > 0, then ln |x|+ C = ln(x) + C, and

d

dx
(ln(x) + C) =

1

x
+ 0 =

1

x
.

If x < 0, then ln |x|+ C = ln(−x) + C, and

d

dx
(ln(−x) + C) = −1 · 1

−x
+ 0 =

1

x
.

Propostion. The Antiderivative of ex. ∫
ex dx = ex + C.

Proof.
d

dx
(ex + C) = ex + 0 = ex.

Propostion. The Antiderivatives of sin(x) and cos(x).∫
sin(x) dx = − cos(x) + C.∫
cos(x) dx = sin(x) + C.

Proof.
d

dx
(− cos(x) + C) = − d

dx
(cos(x)) + 0 = −(− sin(x)) = sin(x),

and
d

dx
(sin(x) + C) = cos(x) + 0 = cos(x).

Following techniques similar to those in the proofs of the preceding propositions, it is possible to
construct antidifferentiation rules for a wide array of functions. We shall look at a more specific example.

Example 2. Find

∫
(7x2 + 4x3) dx.

Solution. We know that x3/3 is an antiderivative of x2, and that x4/4 is an antiderivative of x3. We
therefore expect a result along the lines of∫

(7x2 + 4x3) dx = 7

(
x3

3

)
+ 4

(
x4

4

)
+ C =

7

3
x3 + x4 + C.

Check:
d

dx

(
7

3
x3 + x4 + C

)
=

7

3
· 3x2 + 4x3 + 0 = 7x2 + 4x3, as desired.
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Actually, this example motivates our next theorem, which will allow us to make better use of the
many preceding propositions.

Theorem. Properties of Antiderivatives: Sum and Constant Multiples.

In indefinite integral notation, where f, g are continuous functions and c is a constant,

1.

∫
(f(x)± g(x)) dx =

∫
f(x) dx±

∫
g(x) dx.

2.

∫
cf(x) dx = c

∫
f(x) dx.

Proof. The results are immediate consequences of the sum and constant multiple rules for derivatives.

Example 3. Find

∫
(cos(x) + 4ex) dx.

Solution. We break the antiderivative into two terms:∫
(cos(x) + 4ex) dx =

∫
cos(x) dx +

∫
4ex dx =

∫
cos(x) dx + 4

∫
ex dx = sin(x) + 4ex + C.

Check:
d

dx
(sin(x) + 4ex + C) = cos(x) + 4

d

dx
(ex) + 0 = cos(x) + 4ex, as desired.

As we saw in section 5.3, the Fundamental Theorem of Calculus gives us a way to calculate definite
integrals from their antiderivatives. Indeed, if we denote F (b) − F (a) by F (x)|ba, the theorem says that
if F ′ = f and f is continuous, then∫ b

a

f(x) dx = F (x)|ba = F (b)− F (a).

This means that if we can find F (x), we can compute the value of

∫ b

a

f(x) dx, and our antidifferentiation

techniques have given us the machinery to do just that.

Example 4. Compute

∫ 2

1

(4x3 + 2x) dx using the Fundamental Theorem of Calculus.

Solution. Since F (x) = x4 + x2 is an antiderivative of f(x) = 4x3 + 2x by the reverse power rule,∫ 2

1

(4x3 + 2x) dx = F (x)|21 = F (2)− F (1),

gives ∫ 2

1

(4x3 + 2x) dx =
[
x4 + x2

]2
1

= 24 + 22 − (14 + 12) = 18.

Notice that in this example we used the antiderivative x4 + x2, but x4 + x2 + C will work for any
constant C, since the C will just cancel out in the final computation. In fact, when you are evaluating
definite integrals, it suffices to always choose the C = 0 case.
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Example 5. Compute

∫ π
4

0

sec(x) tan(x) dx exactly.

Solution. We use the Fundamental Theorem. Since F (x) = sec(x) is an antiderivative of f(x) =
sec(x) tan(x), ∫ π

4

0

sec(x) tan(x) dx = [sec(x)]
π
4
0 =

√
2− 1.
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