
MATH 1300 Lecture Notes Section 5.3 Friday, Nov 15, 2013

1. The Fundamental Theorem of Calculus

Theorem: If f is continuous on the interval [a, b] and F is a function such that
F ′(t) = f(t), then ∫ b

a

f(t) dt = F (b) − F (a).

This theorem is so important that it is called the fundamental theorem of calculus. It
is sometimes called the first fundamental theorem of calculus to distinguish it from the
second fundamental theorem of calculus which will be discussed in section 6.4. The
theorem provides a way of computing the exact values of definite integrals without
having to find limits of Riemann sums.

The function F in the theorem is called the antiderivative of f . Now the problem of
finding a definite integral of a function f is reduced to finding an antiderivate of f : a
function whose derivative is f . Finding antiderivatives is not an easy business though:
we have learned several rules to find derivatives of functions given by formulas, but
now we have to find methods to reverse that process. In this course we will only learn
a few simple ways to find antiderivatives. At the beginnig of Calculus II some more
complicated methods will be discussed. However even then we won’t be able to find
antiderivatives of all functions given by arbitrary formulas: it is in fact proven that
there exist elementary functions (functions given by formulas of +,−, ·, /, sin, cos, ln, ex,
etc.) whose antiderivatives cannot be described by elementary formulas.

With a slight modification, the theorem can be put like this:

If F has a continuous derivative on the closed interval [a, b] then∫ b

a

F ′(t) = F (b) − F (a).

Thus, by the theorem, the operations of differentiation and integration are inverses
to each other in a certain sense. This interpretation will be reinforced by the second
fundamental theorem later.

This form of the theorem tells us that the definite integral of the rate of change gives
the total change. For example, in the case of a one dimensional motion, the definite
integral of the velocity between t = t1 and t = t2 gives the total change in the position

between t1 and t2:

∫ t2

t1

v(t) dt = s(t2) − s(t1), where s(t) is the position of the object

at time t and v(t) is the velocity.



A precise proof of the theorem would belong to an Analysis course, but to make the
theorem believable we have the following intuitive argument. Let’s divide the interval
[a, b] into n subintervals of equal length, where n is some large enough number. Then
using the Riemann sum approximation of the integral and the fact that on a small
interval the derivative is close to the difference quotient we have:∫ b

a

F ′(t) dt ≈
n−1∑
i=0

F ′(ti) ∆t ≈
n−1∑
i=0

∆F

∆t
∆t =

n−1∑
i=0

(F (ti+1) − F (ti)) =

= (F (t1) − F (t0)) + (F (t2) − F (t1)) + (F (t3) − F (t2)) + . . .+ (F (tn) − F (tn−1)) =

= F (tn) − F (t0) = F (b) − F (a).

2. Examples.

(a) Find the exact value of the definite integral

∫ π/2

−π/2
cosx dx.

Solution. We know a function whose derivative is cosine: it is the sine function.
Thus by the fundamental theorem of calculus we have:∫ π/2

−π/2
cosx dx = sin(π/2) − sin(−π/2) = 1 − (−1) = 2.

(b) Find the area under graph of f(x) = 3x2 between x = 3 and x = 5.

Solution. This area is given by the definite integral

∫ 5

3

3x2 dx. To find an an-

tiderivative of 3x2, we have to reverse the power-rule: 3x2 = (x3)′. Thus the area

is

∫ 5

3

3x2 dx = 53 − 33 = 125 − 27 = 98.

Notice that the antiderivative of f(x) = 3x2 is not unique. For example the
function F (x) = x3 + 1 is also an antiderivative of f . Of course, the result we
get using this antiderivative is the same: F (5) − F (3) = (53 + 1) − (33 + 1) =
53 − 33 = 98.

3. Units for the Definite Integral.

To find units for the definite integral

∫ b

a

f(x) dx, we consider the definition of the

integral which roughly says that it is the limit of the Riemann sums
∑

f(xi) ∆x. In

the Riemann sum the units of each term f(xi)∆x are units of f(x) times units of x.
Summing and taking limits will not change the units, therefore we have:

The units for the definite integral

∫ b

a

f(x) dx are “units of f(x) times units of x”, or

in other words “units of the output of f times units of the input of f”.



For example, if time is measured in seconds and velocity is measured in meter/seconds,
then the integral of the velocity has units meter/seconds times seconds, that is meters.
This is what we expect because the integral of the velocity gives the distance travelled.

4. The Average Value of a Function over an Interval.

Suppose we wanted to find the average temperature at a given place over a 24 hour
period from midnight to midnight. If we are lazy, we would measure the temperature
four times during the day: at midnight, at 6am, at noon and at 6pm. Then we would
take the average of the four values, thus average temperature ≈ (1/4)(f(0) + f(6) +
f(12) + f(18)), where f(t) is the temperature at time t, t measured in hours since
midnight. This would give a rough estimate of our idea of an average temperature. To
improve the result we would have to measure the temperature more often, say every
hour. Then we get: average temperature ≈ (1/24)(f(0) + f(1) + f(2) + . . .+ f(23). Of
course, this can be improved as well by measuring the temperature every half an hour,
every minute etc., to get more and more accurate values. As we increase the number
of measurements, the results will tend to some value that we define to be the average
temperature over the 24 hour period. (We have not had a definition for this up to now,
we only had some idea of what the average temperature is.) An easy computation
shows (see book, page 276) that the limit of the averages of the measurements as the

number of measurements go to infinity will be the formula
1

24

∫ 24

0

f(t) dt. This can be

generalized to any function to give the following

Definition. The average value of f over the interval [a, b] is defined to be

Av[a,b](f) =
1

b− a

∫ b

a

f(x) dx.

Example. The value, V , of a Tiffany lamp, worth $225 in 1975, increases at 15%
per year. Its value in dollars t years after 1975 is given by V = 225(1.15)t. Find the
average value of the lamp over the period 1975-2010.

Solution. As 2010-1975 = 35, t runs from 0 to 35. Thus using the definition of the
average value of a function over an interval we have that the average value of the lamp
over the given period is

1

35 − 0

∫ 35

0

225(1.15)t dt ≈ $6080.

To find the value of the integral we used WolframAlpha, although it would not have
been hard to find an antiderivative of the integrand and use the first fundamental
theorem of calculus.


