# Math 1300 Notes:

# Section 4.6 - Related Rates

IDEA: In this section, variables are implicitly functions of time.

WANT: To find the derivative with respect to time of one of our variables.

TO SOLVE: Use the relationship between variables, implicit differentiation and the chain rule, and the known derivative of our other variable with respect to time.

EXAMPLE 1 (with Steps for Solving Related Rates Problems):

An 8 foot long ladder is leaning against a wall. The top of the ladder is sliding down the wall at the rate of 2 feet per second. How fast is the bottom of the ladder moving along the ground at the point in time when the bottom of the ladder is 4 feet from the wall?

### Steps:

### 1. Make a Diagram:

Name and label the variables (quantities that are changing). Distinguish between "true" constants" and "variable value".



Name/Label: y = distance from top of ladder to ground, x = distance from bottom of xladder to the wall

"True constants": ladder is 8 ft (not changing)

"Variable values": distance from bottom of ladder to wall at time t is 4 ft.

\*Do not substitute "variable values" until later [Step 5 - Substitute]

#### 2. Rates:

Identify needed rate of change Identify known rates of change \*Note: + means increasing, - means decreasing

Needed rate of change:  $\frac{dx}{dt}$  when x=4 Known rates of change:  $\frac{dy}{dt}=-2\frac{ft}{sec}$ \*Because the ladder is sliding down the wall, the y-value is decreasing so we have a negative rate of change

## 3. Equation Relating Variables:

Find an equation relating the two variables from above.

Use geometry, area or volume formulas, trig formulas, Pythagorean Theorem, physics.

\*If the equation you get has more than these two variables, use extra info from the problem to eliminate the other variables.

By the Pythagorean Theorem,  $x^2 + y^2 = (8 \text{ ft})^2$ . \*It's okay to plug in 8 feet because it's a "true constant". DO NOT substitute x = 4 yet, as that's a "variable value"

### 4. Differentiate:

No need to solve for y before taking the derivative. Instead, differentiate implicitly (using the chain rule), always with respect to time. Be sure to use product rule, quotient rule, etc. when necessary!

$$\frac{d}{dt}(x^2 + y^2) = \frac{d}{dt}(8^2)$$
$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$$

### 5. Substitute:

Now is the time to use your "variable values" and known rates of change.

IMPORTANT: Never substitute until after you differentiate!

You might need to re-use the equation relating your variables again as part of substitution.

At the time t we want to find  $\frac{dx}{dt}$ , the bottom of ladder is 4 ft from wall, so x=4 ft:  $2(4\text{ft})\frac{dx}{dt}+2y\frac{dy}{dt}=0$ 

Use Pythagorean Theorem (again) to get that when the bottom of the ladder is 4 ft from the wall, the top of the ladder is  $4\sqrt{3}$  ft from ground, so  $y=4\sqrt{3}$  ft:  $2(4\mathrm{ft})\frac{dx}{dt}+2(4\sqrt{3}\mathrm{ft})\frac{dy}{dt}=0$ 

Known rate of change is  $\frac{dy}{dt} = -2\frac{\text{ft}}{\text{sec}}$ :  $2(4\text{ft})\frac{dx}{dt} + 2(4\sqrt{3}\text{ft})(-2\frac{\text{ft}}{\text{sec}}) = 0$ 

#### 6. Solve:

Solve for needed rate of change. Check units!

We have:  $8ft \frac{dx}{dt} + -16\sqrt{3} \frac{ft^2}{sec} = 0$ 

$$\frac{dx}{dt} = 16\sqrt{3} \frac{\text{ft}^2}{\text{sec}} \cdot \frac{1}{8\text{ft}}$$

$$\frac{dx}{dt} = 2\sqrt{3} \frac{\text{ft}}{\text{sec}}$$

So the bottom of the ladder is moving along the ground at a rate of  $2\sqrt{3}\frac{\text{ft}}{\text{sec}}$  at the time when the bottom of the ladder is 4 feet from the wall.

## EXAMPLE 2:

Oil spills out of a tanker in a circular shape whose radius is increasing at a rate of  $3\frac{ft}{sec}$ . How fast is the area of the spill increasing when the radius is 60 ft.?



- 1. Our variables are the radius r and area A. "Variable values": the radius at time t is 60 ft.
- 2. Rates:

Known rate of change:  $\frac{dr}{dt} = 3 \frac{\text{ft}}{\text{sec}}$ . Needed rate of change:  $\frac{dA}{dt}$ 

3. Equation relating r, A:  $A = \pi r^2$ .

4. Differentiate:  $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$ 

5. Substitute:  $\frac{dA}{dt} = 2\pi (60 \text{ft}) (3 \frac{\text{ft}}{\text{sec}})$ 

6. Solve:  $\frac{dA}{dt} = 360\pi \frac{\text{ft}^2}{\text{sec}}$ 

#### EXAMPLE 3:

A streetlight is mounted at the top of a 15 ft pole. A 6 ft. tall bear walks away from the pole at a speed of 3  $\frac{\text{ft}}{\text{sec}}$ . How fast is the end of its shadow moving?



- 1. Our variables are the distance of the bear from the pole call that "x" and the distance from the end of its shadow from the pole - call that "s".
- 2. Rates:

Known rate of change:  $\frac{dx}{dt} = 3\frac{\text{ft}}{\text{sec}}$ . Needed rate of change:  $\frac{ds}{dt}$ 

3. Equation relating x, s: By similar triangles, we get  $\frac{s-x}{6} = \frac{s}{15}$ . So 15s - 15x = 6s, and we get 9s = 15x.

4. Differentiate:

$$\begin{array}{l} \frac{d}{dt}[9s] = \frac{d}{dt}[15x] \\ 9\frac{ds}{dt} = 15\frac{dx}{dt} \end{array}$$

- 5. Substitute:  $9\frac{ds}{dt} = 15(3\frac{\text{ft}}{\text{sec}})$
- 6. Solve:  $\frac{ds}{dt} = 5 \frac{\text{ft}}{\text{sec}}$ .