
MATH 1300

SECTION 4.4: OPTIMIZATION, MODELING, GEOMETRY

(We will assume all functions are continuous on their domain.)

RECALL

§4.1 how to find local extrema

• Find the critical points of the function by solving
f ′(x) = 0 or DNE.

• FIRST DERIVATIVE TEST
Find the sign of f ′(x) on the intervals given by the critical points:

(max)
+

oo
−

(min)
+

(neither)
+

//

or

• SECOND DERIVATIVE TEST
Check concavity at the critical points p

f ′′(p) > 0 local min

f ′′(p) < 0 local max

f ′′(p) = 0 inconclusive!

§4.2 Optimization: finding GLOBAL extrema

• When there is only ONE CRITICAL POINT
Test for a local extreme at the critical point.

• On a CLOSED INTERVAL [a,b]
Compare f(a), f(b) and local extrema.

• On an OPEN INTERVAL and all real numbers (−∞,∞)
Compare local extrema and the end behavior of the function

Date: 10/28-29.

1



4.4 2

Motivating Example.

Suppose G(s) below gives the fuel consumption (in mpg) of a car traveling at a
speed s (in mph).

G(s) = − 1

20
(s− 30)2 + 45.

(1) What is the global maximum of G over the interval [0, 25]?

Since the derivative exists everywhere, the only critical points are solutions
to

G′(s) = 0

− 1

10
(s− 30) = 0

s = 30

This is then the only critical point of G, and it is not in our interval [0,25].

So G must have a maximum at an endpoint. Comparing

G(0) = − 1

20
(0− 30)2 + 45 = 0 and G(25) = − 1

20
(25− 30)2 + 45 = 43.25,

we see that on the interval [0, 25], G has a maximum of 43.25 mpg at a speed of 25 mph.

What did this calculation tell us? We have used the function describing
fuel consumption to determine that in a 25 mph zone, it is best to drive
the speed limit rather than slower. But is 25 mph the best we can do in
general?

(2) What is the global minimum of G on (−∞,∞)?

(−∞,∞) is an open interval, and s = 30 is the only critical point, so we
apply the first derivative test to see it is local maximum:

(G′) 30
+

oo
−

//

Thus s = 30 mph gives a local (and global) maximum for G of
G(30) = 45 mpg.
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We have answered an important question: Given a function describing fuel con-
sumption, what is the most fuel efficient speed at which I should drive my car?

This is a simple example of the use of optimization and modeling. In general, there

may be a real world situation that we would like to optimize (the optimum route

to take to drive to work, the optimum dimensions for a can of soda, the optimum

price at which to sell airline tickets during the holidays, etc.) The goal is to come

up with a function that describes the situation we want to optimize, and then use

the techniques of §4.2.

Often times, the quantity we wish to optimize is subject to some constraints. For

instance, above we found that the best speed at which to drive the car was 30 mph,

but subject to the constraint that my speed must be between 0 and 25 mph, 25 mph

was best.

Example. An elementary school needs to fence in an area of land for a rectangu-

lar playground. The playground must be 600 square feet, and one side bordering a

road must be built with a taller fencing. If the cost of the regular fencing is $2 per

foot, and the taller fencing costs $4 per foot, what dimensions should the school

choose for its playground?

(1) Draw a picture:

w 600ft2

l

(2) What are we trying to optimize?

We should try to minimize the cost of the fencing! So we need a function that

describes the cost in terms of the dimensions. Since we are fencing in a rect-

angular portion, we can use ` for the length and w for the width. We may as well

assume that the more expensive side will occur in the width, so we come up with
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an equation for cost:

C = 2($2)`+ $2w + $4w,

or written in a simpler way,

C = 4`+ 6w dollars.

(3) Now, what constraints do we have?

We need the rectangle to have an area equal to 600 square feet, and we also

know that physically ` and w must take on values that are positive. We can express

this by writing

`w = 600 and `, w > 0.

(4) Use the constraints to rewrite C as an explicit function of one variable w.

Since `w = 600, we know that

` =
600

w
,

so we substitute and get

C =
4(600)

w
+ 6w.

(5) Optimize your function!

We need to find the global minimum of C on the open interval (0,∞). The

critical point will occur when

C ′ =
−4(600)

w2
+ 6 = 0

6 =
4(600)

w2

6w2 = 4(600)

w2 =
4(600)

6

w = ±20.

Since our interval is (0,∞), we get only one critical point, w = 20.
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Using the second derivative test, we see that at w = 20,

C ′′ =
8(600)

203
> 0

so C is concave up here and we have a local (so also global) minimum at w=20

on the interval (0,∞). Finally, don’t forget that

` =
600

w
,

so ` = 30 feet. Hence we have found that the cost minimizing dimensions will

be 20× 30 feet , with a 20 foot side along the road.

If we want to know what was the cost that these dimension got us, we can just plug

into the original cost function to find that the minimum cost is

4(30) + 6(20) = $240.

It is important to note that the hardest part about optimization problems is the

need to write down the functions yourself just from the information given in the

problem. A suggested method on how to do this might look something like this:

Steps for Optimizing

• Draw a picture of the situation (if possible)

• Identify what you need to optimize (cost, area, volume, time, etc.)

• Write a formula for the variable to be optimized as well as formulae

describing constraints.

• Substitute the constraints into the formula for the variable to be

optimized in order to get the variable to be optimized as a function

of one other variable.

• Identify the domain over which you are optimizing.

• Find the extrema of your function over the domain.
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Useful Geometric Identities
(b = base; h = height, ` = length, w = width, r = radius, s = hypotenuse)

• Triangle

Area =
1

2
b · h

• Rectangle

Perimeter = 2`+ 2w Area = ` · w
• Circle

Circumference = 2πr Area = πr2

• Sphere

Surface Area = 4πr2 Volume =
4

3
πr3

• Rectangular Box

Surface Area = 2` · w + 2` · h+ 2w · h Volume = ` · w · h
• Cylinder

Surface Area = 2πr2 + 2πr · h Volume = πr2h

• Cone

Surface Area = πr2 + πr · s Volume =
1

3
πr2h


