- 1. Section 4.2 of HH Optimization
 - (a) Global Maxima and Minima. f has a global minimum/maximum at p if f(p) is less than/greater than or equal to all values of f.
 - (b) For example, the function $f(x) = x^2$ has a global minimum at x = 0.
 - (c) For consideration, the function f(x) = x has no global maximum or minimum.
- 2. Global extrema on a closed interval. On a closed interval [a, b], we can *guarantee* the existence of a global max or min.
 - For a continuous function f on a closed interval $a \le x \le b$,
 - Find the critical points of f on the interval.
 - Evaluate the function at the critical points *and* at the endpoints *a* and *b*.
 - Choose the largest/smallest of the function values at the endpoints/critical points.
- 3. Example

Let $f(x) = x^2$ on [-1, 2].

First, we find the critical points. f'(x) = 2x, so we have one critical point at x = 0. Then we check f(x) at the critical point and the endpoints.

$$f(-1) = 1$$
$$f(0) = 0$$
$$f(2) = 4$$

Thus, f has a global minimum at x = 0 and a global maximum at x = 2. (Note that f(x) has a global maximum because of the restriction to [-1, 2]. If we considered f(x) on all real numbers, it would have no maximum).

- 4. Global extrema on an open interval (or all real numbers). In this case, we cannot guarantee the existence of global extrema.
- 5. Example

Let $g(x) = x^3$ on (-1, 1).

There is a critical point here, but g has no global max or min. One way to think about this is that -1 < g(x) < 1 for all x-values in the domain, but g is never equal to ± 1 .

6. Example

Let $h(t) = te^{-t}$ on $(0, \infty)$.

Then $h'(t) = e^{-t}(1-t)$, so we have one critical point at t = 1 (use the first derivative test to check that this is a local maximum). Furthermore, this is the only critical point, so our intuition would tell us that the graph of h won't "turn" back up. Thus, h has a global max at t = 1.

In fact, this is an instance of a nice theorem:

Theorem. If a function is continuous and has exactly one critical point, and that critical point is a local min/max, then it is a global min/max.

7. In general, it is useful to look at the graph of a function, because it will give some idea about the behavior of the graph as $x \to \pm \infty$. For example, the graph of $\arctan x$ is bounded: $-\frac{\pi}{2} < \arctan x < \frac{\pi}{2}$, but never attains those values, so there is no max or min.

