
Sec. 3.7: Implicit Functions

Up until now we have mostly represented functions in the form y = f(x) where f(x) is some function
defined with a single variable x. In this case y is said to be an explicit function of x.

But sometimes we are given an equation where we can’t isolate the variable y to be in the above form.
Consider the following graph of the unit circle.
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This curve is represented by the equation y2 +x2 = 1. Note that this equation is not a function, you can
see this by applying the vertical line test, or by simply noting that at x = 0, y is both 1 and −1.

Now we can describe the upper half of this circle by the function y =
√

1− x2, and the lower half of this
circle by the function y = −

√
1− x2. But since the curve y2 + x2 = 1 isn’t a function, there is no way to

express it as an explicit function y = f(x). So while the curve y2 + x2 = 1 isn’t itself a function, we say it
implies the functions y =

√
1− x2 and y = −

√
1− x2. So an equation of this form is said to give y as an

implicit function of x.

Now looking at the graph below, you can see that at any point on the curve, there exists line that is
tangent to the curve at that point,
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So while the curve y2 + x2 = 1 isn’t a function, we still have lines tangent to the curve whose slopes
represent the rate of change dy

dx at a point. So we want to find the derivative dy
dx that will give us the slope

of the tangent line at a point.
In order to find the derivative of the curve y2 + x2 = 1, let’s first take the derivative of both sides

d
dx [x2 + y2] = d

dx [1]

Now by the sum rules for derivatives I can break up the left hand side of the equation across the addition.
And by the constant rule we know that the right hand side of the equation is equal to 0. So,

d
dx [x2] + d

dx [y2] = 0 ⇒ 2x + d
dx [y2] = 0 ⇒ d

dx [y2] = −2x

Note: Even though y isn’t a function of x, it is an implicit function of x. So we still need to apply the chain
rule when differentiating y2

So using the chain rule we have that,

d
dx [y2] = 2y dy

dx

Plugging this into what we already have we see that,

2y dy
dx = −2x

Now remember, we want the function dy
dx , so isolating that term we get,

dy
dx

= −2x
2y

⇒ dy

dx
= −x

y

One thing you might notice is that at y = 0 this function is undefined. This makes sense since if you
look at the graph you’ll notice that at our two points (-1,0), (1,0), where y = 0, we will have vertical tangent
lines, which have undefined slope.

Note: One question you might ask is what does this derivative dy
dx tell us about our implied functions

y =
√

1− x2 and y = −
√

1− x2. The answer is that this formula for the derivative will in fact hold for both

of our implied functions. Which we will check below by differentiating the explicit formulas for y.

-Upper half of circle: y =
√

1− x2 ⇒ y = (1− x2)
1
2

By by the chain rule, we know that,

dy
dx

= 1
2
(1− x2)−

1
2 · −2x ⇒ dy

dx
= − x√

1−x2

Now recall that we defined y =
√

1− x2,

Therefore dy
dx = −x

y 3
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-Lower half of circle: y = −
√

1− x2 ⇒ y = −(1− x2)
1
2

By by the chain rule, we know that,

dy
dx

= −1
2
(1− x2)−

1
2 · −2x ⇒ dy

dx
= x√

1−x2

Now recall that we defined y = −
√

1− x2 which implies
√

1− x2 = −y,

Therefore dy
dx = −x

y 3

So we can see that given an implicit function y of x and its derivative dy
dx , this derivative will hold every-

where on the curve.

Example 1: Let x2 + 5x− 4y2 + 3y = 0, Find the derivative of this curve dy
dx

Solution: Taking the the derivative of both sides we see that,

d
dx [x2 + 5x− 4y2 + 3y] = d

dx [0]

⇒ d
dx [x2] + d

dx [5x]− d
dx [4y2] + d

dx [3y] = 0

⇒ 2x + 5− 4 d
dx [y2] + 3 d

dx [y] = 0

Now the important thing to remember when taking the derivative with respect to x of any function y (in
this case y2 and y) is that we have to treat y as a function of x. So we have to apply the chain rule,

2x + 5− 4[2y dy
dx ] + 3[ dydx ] = 0

Solving for dy
dx we see that,

−4[2y dy
dx ] + 3[ dydx ] = −2x− 5 ⇒ dy

dx [−8y + 3] = −2x− 5 ⇒ dy

dx
=
−2x− 5

−8y + 3

Example 2: Let y = x2y3 + y2x3, Find the derivative of this curve dy
dx

Solution: Taking the the derivative of both sides we see that,

d
dx [y] = d

dx [x2y3 + y2x3] ⇒ dy
dx = d

dx [x2y3] + d
dx [y2x3]

Remember that y is an implicit function of x, so to differentiate the remaining to terms x2y3 and y2x3, we
need to first apply the product rule and then apply the chain rule.
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dy
dx = [2xy3 + x23y2 dy

dx ] + [2y dy
dxx

3 + y23x2]

Now we want to solve for dy
dx by isolating every term with a dy

dx on one side, and then factoring out dy
dx ,

dy
dx − x23y2 dy

dx − 2y dy
dxx

3 = 2xy3 + y23x2

⇒ dy
dx [1− x23y2 − 2yx3] = 2xy3 + y23x2

⇒ dy

dx
=

2xy3 + 3y2x2

1− 3x2y2 − 2yx3

Example 3: Recall from chapter 3.2, we proved the exponential rule d
dx [ax] = ln(a)ax using the definition

of derivative (the limit of the difference quotients). But now that we have the tool of implicit differentiation,
we can prove this rule in a much simpler fashion.

So let y = ax for some constant a > 0

To make this equation nicer, let’s take the natural log of both sides,

ln(y) = ln(ax) ⇒ ln(y) = x · ln(a)

Now by differentiating both sides we get,

d
dx [ln(y)] = d

dx [x · ln(a)]

⇒ d
dx [ln(y)] = ln(a)

Now recall that d
dx [ln(x)] = 1

x , so using this fact and the chain rule we see that,

1
y
dy
dx = ln(a)

Remember that we originally defined y = ax, so,

1
ax

dy
dx = ln(a)

⇒ dy

dx
= ln(a)ax
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