Lecture Notes

1. Section 3.6 of HH - The Chain Rule and Inverse Functions

We know that the graphs of a function and its inverse are reflections of one another across the line y = x. Therefore, we can expect that their derivatives will be related as well. In this section we'll show that given a function y = f(x) (that we know how to differentiate) we can use the chain rule to find the derivative of its inverse. In particular, we will show the following:

•
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

• $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$
• $\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}$

(a) Let's start by finding the derivative of $y = \ln x$. Since the inverse of $\ln x$ is e^x , then $e^y = x$. Differentiate both sides of this equation with respect to x and use the chain rule to find $\frac{dy}{dx}$:

$$\frac{d}{dx}(e^y) = \frac{d}{dx}(x)$$

$$\Rightarrow e^y \cdot \frac{dy}{dx} = 1, \text{ by the chain rule}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{x}, \text{ since } e^y = x.$$

Since $y = \ln x$ we have shown that $\frac{d}{dx}(\ln x) = \frac{1}{x}$.

(b) Let's use the same procedure to find the derivative of $y = \arctan x$. Since the inverse of $\arctan x$ is $\tan x$, then $\tan y = x$. So by the Pythagorean Identity, $\sec^2 y = 1 + \tan^2 y = 1 + x^2$. Therefore,

$$\frac{d}{dx}(\tan y) = \frac{d}{dx}(x)$$

$$\Rightarrow \sec^2 y \cdot \frac{dy}{dx} = 1, \text{ by the chain rule}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1+x^2}.$$

(c) Now suppose that f is any invertible function. Let $y = f^{-1}(x)$. Then f(y) = x. So, differentiating both sides of this equation with respect to x gives:

$$\frac{d}{dx}(f(y)) = \frac{d}{dx}(x)$$

$$\Rightarrow f'(y) \cdot \frac{dy}{dx} = 1, \text{ by the chain rule}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{f'(y)} = \frac{1}{f'(f^{-1}(x))}.$$

Therefore, we have shown:

If f is an invertible function and $y = f^{-1}(x)$, then $\frac{d}{dx}(f^{-1}(x)) = \frac{1}{f'(y)} = \frac{1}{f'(f^{-1}(x))}.$

Below is a graph of $f(x) = e^x$ and $f^{-1}(x) = \ln x$, along with the tangent lines at the points (1, e) and (e, 1), respectively.

We see that in order to find the derivative of $\ln x$ at the point (e, 1), we invert the value of the derivative of e^x at the point (1, e). In general, the derivative of f^{-1} at a point (a, b) is equal to the reciprocal of the derivative of f at the point (b, a).

(d) We can use the above result to find the derivative of $y = \arcsin x$. Since $\arcsin x$ is the inverse of $\sin x$, then $\sin y = x$. So, by the Pythagorean Identity,

$$\sin^2 y + \cos^2 y = 1$$

$$\Rightarrow \cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}.$$

Therefore, since $\frac{d}{dx}(\sin x) = \cos x$, we have that

$$\frac{d}{dx}(\arcsin x) = \frac{1}{\cos y} = \frac{1}{\sqrt{1-x^2}}.$$

- 2. Examples
 - (a) Find the derivative of $f(x) = \ln(\sin x)$.

Solution. Since the derivative of $\ln x$ is $\frac{1}{x}$, then by the chain rule,

$$f'(x) = \frac{1}{\sin x} \cdot \frac{d}{dx} (\sin x) = \frac{1}{\sin x} (\cos x) = \cot x.$$

(b) Find the derivative of $f(x) = \arctan\left(\frac{x}{x+1}\right)$.

Solution. Since the derivative of $\arctan x$ is $\frac{1}{1+x^2}$, then by the chain rule

$$f'(x) = \frac{1}{1 + \left(\frac{x}{x+1}\right)^2} \cdot \frac{d}{dx} \left(\frac{x}{x+1}\right)$$

= $\frac{1}{1 + \frac{x^2}{(x+1)^2}} \cdot \frac{(x+1)\frac{d}{dx}(x) - x \cdot \frac{d}{dx}(x+1)}{(x+1)^2}$, by the quotient rule
= $\frac{1}{1 + \frac{x^2}{(x+1)^2}} \cdot \frac{x+1-x}{(x+1)^2}$
= $\frac{1}{1 + \frac{x^2}{(x+1)^2}} \cdot \frac{1}{(x+1)^2}$
= $\frac{1}{(x+1)^2 + x^2}$
= $\frac{1}{2x^2 + 2x + 1}$.

(c) Find the derivative of $f(x) = \cos(\arcsin x)$.

Solution. By the chain rule,

$$f'(x) = -\sin(\arcsin x) \cdot \frac{d}{dx}(\arcsin x) = -\sin(\arcsin x)\left(\frac{1}{\sqrt{1-x^2}}\right) = \frac{-x}{\sqrt{1-x^2}}.$$

(d) Use the table below, and that fact that f is invertible and differentiable, to find $(f^{-1})'(3)$.

Solution. First note that since f(9) = 3, then $f^{-1}(3) = 9$. So, in order to compute the value of the derivative of f^{-1} at the point (3, 9), we need to find the reciprocal of the value of the derivative of f at the point (9, 3). That is,

$$(f^{-1})'(3) = \frac{1}{f'(f^{-1}(3))} = \frac{1}{f'(9)} = \frac{1}{5}.$$