$\mathbf{Math} \ \mathbf{1300}, \mathbf{Midterm} \ \mathbf{2}$ October 10, 2016

PRINT YOUR NAME: SOLUTIONS

PRINT INSTRUCTOR'S NAME:											
Mark your section/instructor:											
	Section 001	Brendt Gerics	8:00-8:50								
	Section 002	Sebastian Bozlee	8:00-8:50								
	Section 003	Albert Bronstein	10:00-10:50								
	Section 004	Albert Bronstein	9:00-9:50								
	Section 005	Suzanne Craig	9:00-9:50								
	Section 006	Athena Sparks	10:00 - 10:50								
	Section 007	Isabel Corona	10:00 - 10:50								
	Section 008	Ali Lotfi	11:00 - 11:50								
	Section 009	Krisztina Dearborn	11:00 - 11:50								
	Section 010	Braden Balentine	11:00 - 11:50								
	Section 011	Harrison Stalvey	12:00 - 12: 50	n LATEX again to produce the table							
	Section 012	Jun Hong	12:00 - 12: 50	ii E-1EA again to produce the table							
	Section 013	Tyler Schrock	1:00 - 1:50								
	Section 014	Ira Becker	1:00 - 1:50								
	Section 015	Carlos Pinilla-Suarez	2:00 - 2:50								
	Section 016	Shen Lu	2:00 - 2:50								
	Section 017	Matthew Pierson	3:00 - 3:50								
	Section 018	Tien Trinh	9:00 - 9:50								
	Section 019	Daniel Martin	4:00 - 4:50								
	Section 880	Ira Becker	12:00 - 12:50								
	Section 888R	Ilia Mishev	2:00 - 2:50								
	Section 430R	Patrick Newberry	10:00 - 10:50								

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 80 minutes and the exam is ?? points.
- \bullet You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like ln(3)/2 as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.

 $\bullet\,$ We hope you show us your best work!

1. Differentiate the following functions. Do not simplify.

Midterm 2

(a) (4 points)
$$f(x) = 2e^x + x^{\frac{2}{5}} - 2x^5 + x^{-3} - \pi^2$$

Ans:
$$f'(x) = 2e^x + \frac{2}{5}x^{\frac{-3}{5}} - 10x^4 - 3x^{-4}$$

(b) (4 points)
$$h(x) = \frac{-4x^2 + 3x - 1}{4x^3 + 10}$$

Ans: $h'(x) = \frac{(4x^3 + 10)(-8x + 3) - (-4x^2 + 3x - 1)(12x^3)}{(4x^3 + 10)^2}$

(c) (4 points)
$$g(x) = \ln(x) \cdot \arcsin(x)$$

Ans:
$$g'(x) = \frac{\arcsin(x)}{x} + \frac{\ln(x)}{\sqrt{1-x^2}}$$

2. Multiple choice. You do not need to show your work. Circle the derivative of the given function.

(a) (4 points)
$$f(\theta) = \sec(\theta^2 + \cos(\theta))$$

A. $sec(\theta) tan(\theta) (2\theta - sin(\theta))$ B. $tan^2(2\theta - sin(\theta))$

C. $\frac{2\theta - \sin(\theta)}{\cos(\theta^2 + \cos(\theta))}$

D. $\sec(\theta^2 + \cos(\theta))\tan(\theta^2 + \cos(\theta))(2\theta - \sin(\theta))$

Ans: D

(b) (4 points) $g(t) = \frac{\log_3(t)}{5}$

A.
$$\frac{t}{\ln(3)5}$$

B. $\frac{\ln(3)}{5t}$

C.
$$\frac{1}{\ln(3)5t}$$

D. $\frac{t}{\ln(3)}$

Ans: C

(c) (4 points) $h(w) = 4^w(w^2 + 11)$

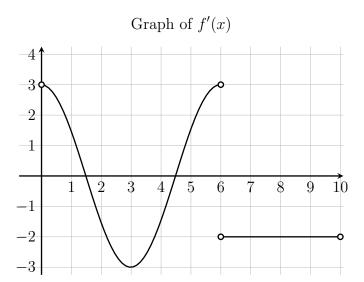
A.
$$\ln(4)4^{w}(2w)$$

B.
$$\ln(4)4^w(w^2+11)+4^w(2w)$$

C.
$$w4^{w-1}(w^2+11)+4^w(2w)$$

D.
$$\ln(4)4^w + 2w$$

Ans: B


3. (8 points) Find the point on the graph of $f(x) = 3x^2 - 4x + 5$ such that the tangent line at that point is parallel to the line y = 2x + 150.

Ans: (1,4)

4. (8 points) Suppose $q(x) = x \arctan(x)$. Find the equation of the tangent line through $(1, \pi/4)$.

Ans:
$$\left(y - \frac{\pi}{4}\right) = \left(\frac{\pi}{4} + \frac{1}{2}\right)(x - 1)$$

5. Multiple Choice – circle the correct answer. The graph below is the derivative of some function, f.

- (a) (2 points) On which one of the following intervals is f increasing?
 - A. (0, 1.5)
- B. (1.5, 3)
- C. (1.5, 4.5)
- D. (3, 4.5)
- E. (6, 10)

- Ans: A
- (b) (2 points) At which of the following x-values does f(x) have a local minimum?
 - A. 1.5
- В. 3
- C. 4.5
- D. 6
- E. 8

- Ans: C
- (c) (2 points) On which one of the following intervals is f(x) concave upward?
 - A. (0, 1.5)
- B. (1.5, 4.5)
- C. (3,6)
- D.(6, 10)
- E. None.

- Ans: C
- (d) (2 points) Which of the following is an x-value of an inflection point?
 - A. 1.5 Ans: B
- B. 3
- C. 4.5
- D. 6
- E. 8
- (e) (2 points) Is it possible for the function f(x) to be continuous at x = 6? Explain.

Ans: Yes. At x = 6 the function f(x) is not differentiable, but this does not imply it is not continuous. For example, there could be a corner or a cusp at x = 6.

- 6. Let $f(x) = x^3 + \frac{9}{2}x^2 12x + 13$. You must show your work for each of the following to receive credit.
 - (a) (4 points) Find f'(x) and f''(x).

Ans:
$$f'(x) = 3x^2 + 9x - 12$$
 and $f''(x) = 6x + 9$

(b) (4 points) On what interval(s) is f decreasing?

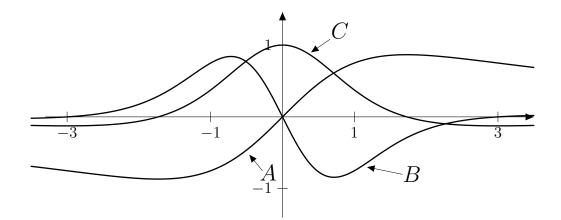
Ans:
$$(-4,1)$$

(c) (4 points) On what interval(s) is f concave downward?

Ans:
$$(-\infty, -3/2)$$

7. (8 points) Consider the curve described by the points satisfying the equation

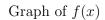
$$x^3 + y^3 = 2x^3y + 5.$$

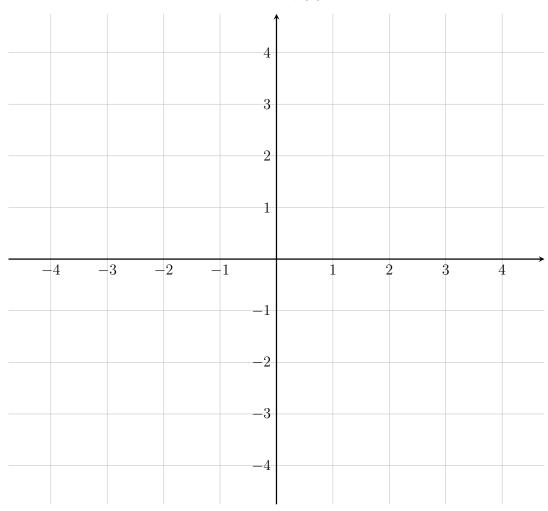

Find the equation of the tangent line at the point (1,2).

Ans:
$$(y-2) = \frac{9}{10}(x-1)$$

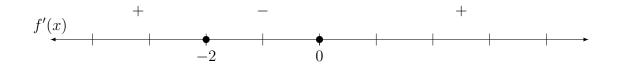
8. (8 points) Use logarithmic differentiation to find y', where $y = x^{\sin(x)}$. Your final answer should be in terms of x.

Ans:
$$y' = \left(\cos(x)\ln(x) + \frac{\sin(x)}{x}\right)x^{\sin(x)}$$

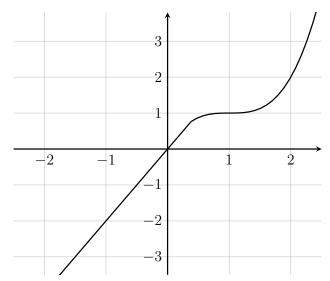

9. (6 points) The graph of a function f(x) and its first and second derivatives are shown below.



Match the graph of each function $A,\,B,\,$ and C to the corresponding functions below.


- I) f(x) _____ Ans: A
- II) f'(x) Ans: C
- III) f''(x) Ans: B

10. (8 points) Draw the graph of a function f(x) that satisfies the given sign charts below. A solid dot indicates that the given function is zero at that value.



11. Mutliple choice – circle the correct answer. Find the derivatives of the following functions at the given point using the information given below:

Graph of f(x)

x	-3	-2	-1	0	1	2	3	4
g(x)	2	-4	-2.5	1	3	5	14	5
g'(x)	-3	-2	2	4	2	4	3	-6

- (a) (2 points) If h(x) = g(g(x)), what is h'(-3)?
 - A. -12
- B. -3
- C. 4
- D. 5
- E. 12

Ans: A

- (b) (2 points) If q(x) = f(x)g(x), what is q'(1)?
 - A. 0
- B. 1
- C. 2
- D. 3
- E. 4

Ans: C

- (c) (2 points) If $p(x) = f^{-1}(x)$, what is p'(-2)?
 - A. -1 B. 2
- C. $\frac{1}{2}$ D. -2
- E. 0

Ans: C

- (d) (2 points) If $m(x) = g(\sqrt{x})$, what is m'(4)?
 - A. $\frac{5}{4}$
- B. 4
- C. 5
- D. -6
- E. 1

Ans: E