
Derivative Practice: Inverse Trigonometric Functions

1. If k(t) = 2arcsin(
√
t), then what is k′(t)?

Solution:
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2. If g(p) =
p2

3
arctan(5p− 1) + k, then what is g′(p)?

Solution:
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3. If f(x) =
x

arcsin (ex)
, then what is f ′(x)?

Solution:

f ′(x) =
arcsin (ex)− x · ex√
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4. If h(x) = tan(arctan(x)), then what is h′(x)?

Solution:

h′(x) =
sec2(arctan(x))

1 + x2

Better solution: We have h(x) = tan(arctan(x)) = x by inverse functions. So, h′(x) = 1.

Note that by using the triangle technique, the first solution can be simplified:
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sec2(arctan(x)) = (sec(θ))2 = 1 + x2

sec2(arctan(x))

1 + x2
=

1 + x2

1 + x2
= 1

Happily, the two methods of finding the derivative yield the same answer.


