
Math 1300: Calculus I Project: Ebola, and arctan (x)

Modeling with an inverse trig function – an Ebola outbreak in 1995
Goal: To study a model for deaths due to an Ebola outbreak and to use this model to discover a
connection between the values of a function and the area under the function’s derivative.

In 1995 there was a 90-day-long outbreak of Ebola in the Democratic Republic of Congo (DRC).
The points below are a plot of a function N(t) which represents the total number of deaths from
the beginning of the outbreak to the end of day t.
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1. (a) Translate the equation N(22) = 15 into an explanatory English sentence.

By day 22 of the outbreak, 15 people had died.

(b) The data shows that 13 = N(16) = N(17) = N(18) = N(19) = N(20) = N(21). What
can you conclude from this data? (Give your answer in a complete English sentence.)

13 people had died by day 16, and then there were no new deaths on days 17, 18, 19,
20 or 21. The next person died on day 22, when it looks like N increased again. We
can’t quite tell from the graph how many new deaths there were on that day, but at
least 14 had died by day 22.
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An important way to analyze data is to find a function that models the data–which means
that the graph of the function closely fits the data points. The function

D(t) =
1654

21

(
arctan

(
2(t− 45)

21

)
+ arctan

(
30

7

))
is a good model for the 1995 Ebola data as the below graph shows:
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2. How well does the mathematical model D(t) for the number of deaths represent the actual
cumulative death count N(t)? When does the model least accurately reflect the data? When
do we see the largest discrepancy between the rate of change of the model and the rate of
change of the actual data?
The model fits quite well, though the actual count seems to sag a bit below the model in a
couple of places, for t in the 30s and 50s. The model is least accurate between days 35 and
40, where the gap between the curve and the points is largest. The rate of change (slope) is
notably inaccurate around day 40 (when the rate of change of the data is significantly steeper
than the model predicts). Then around day 45 the data looks pretty flat (derivative close to
0) while the model is actually at its steepest (largest derivative occurs at the inflection point).

3. Assuming, for the moment, that the actual cumulative death count is given by the above
function D(t), show that the instantaneous death rate R(t), in deaths per day, is given by
the formula

R(t) =
3308

441 + 4(t− 45)2
.

R(t) = D′(t) =
d

dt

[
1654

21

(
arctan

(
2(t− 45)

21

)
+ arctan

(
30

7

))]
=

1654

21

d

dt
arctan

(
2(t− 45)

21

)
=

1654

21
· 1

1 +

(
2(t− 45)

21

)2 · d

dt

(
2(t− 45)

21

)

=
1654

21
· 2

21
· 1

1 +

(
2(t− 45)

21

)2 =
3308

441 + 4(t− 45)2
.
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The function R(t) that you found in problem 3 is sketched on the axes below. (Note the bell
shape!!)
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Note that we’ve dashed in a rectangle over each of the first three intervals of length 5, on the
above t axis. The height of each rectangle is just the value of the function R(t) at the right
endpoint of the interval in question.

4. Continue the process of drawing rectangles over each of the above subintervals of length 5,
on the t axis, with the height of each rectangle being the value of R(t) at the rightmost edge
of the rectangle.

5. Let T (t0) denote the total area of the rectangles you’ve sketched in, between t = 0 and t = t0.
Compute T (20), T (40), T (60), and T (80). (Recall that each rectangle has base length 5, and
height given by the value of R(t) at the right endpoint of the rectangle.) (The total areas you
are considering here are called Riemann sums; more on these later in class.)

T (20) = 5R(5) + 5R(10) + 5R(15) + 5R(20) = 15.2316

T (30) = 5R(5) + 5R(10) + 5R(15) + 5R(20) + · · · + 5R(30) = 35.6695

T (40) = 5R(5) + 5R(10) + 5R(15) + 5R(20) + · · · + 5R(40) = 85.9096

T (60) = 5R(5) + 5R(10) + 5R(15) + 5R(20) + · · · + 5R(60) = 185.989

T (80) = 5R(5) + 5R(10) + 5R(15) + 5R(20) + · · · + 5R(80) = 206.907

T (90) = 5R(5) + 5R(10) + 5R(15) + 5R(20) + · · · + 5R(90) = 211.261
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6. Compare the above numbers T (20), T (40), T (60), and T (80), to the numbers D(20), D(40),
D(60), and D(80) you get by plugging in the appropriate t-values into the formula for D(t)
above. Do you see a correspondence between these sequences of numbers? Do you have any
idea why this correspondence should be true?

(This correspondence amounts to a HUGE theorem, called the Fundamental Theorem of
Calculus, which we’ll discuss in class later.)

We compute that

D(20) = 13.2632, D(30) = 30.0472, D(40) = 70.6609,

D(60) = 181.281, D(80) = 206.427, D(90) = 211.328

Note that these values of D are quite close, at least for t ≥ 60, to the corresponding values
of T given on the previous page. The BIG IDEA behind what we’re seeing here is this.

Consider the area of any of the above rectangles – say, for the sake of argument, the 9th
rectangle indicated above (the tallest one). The baselength of of this rectangle is 5 days, and
the height is R(45). But remember R(45) = D′(45), so the height of the rectangle is D′(45),
which is the instantaneous rate of change of D(t) at t = 45. But instantaneous rates of change
are roughly equal to average rates of change, over short enough intervals, so the height of the
rectangle is roughly equal to the average rate of change of D(t) over the interval from t = 40
from t = 45.
Now area=base×height, so:

area of rectangle ≈ 5 days × average death rate over those 5 days

= total, or cumulative, number of deaths over those five days.

The moral of the story is that there is a relationship between total change on the one hand,
and area under the graph of the rate of change function on the other.
This relationship is formalized by the Fundamental Theorem of Calculus, which we’ll get to
soon.

Why do you think the values of T (t) that you calculated in problem 5 start off higher than
corresponding values of D(t), and then later D(t) catches up?

R(t) starts off increasing, so the rectangles are all above the curve, giving a larger area than
under the curve itself. So in the beginning T (t) is larger than D(t). But later R(t) decreases,
so the rectangles lie below the curve. There the areas of the rectangles are smaller than the
area under the curve, so T (t) is growing slower than D(t). By the time we get to t = 80, the
errors pretty much balance out and T (t) is close to D(t).
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