
Project 14–Antiderivatives, Indefinite Integrals, and Definite Integrals

1. Find the most general antiderivative for each of the following functions.

b) e^x	e^{2x}	e^{3x+1}
1	1	1
c) $\frac{1}{x}$	$\frac{1}{3x}$	$\frac{1}{3x+2}$
		1
d) \sqrt{x}	$\sqrt{2x}$	$\frac{1}{\sqrt{2x}}$

2. Evaluate each of the following indefinite integrals.

a)
$$\int \frac{1}{3x} dx$$
 $\int \frac{2}{3x+5} dx$

b)
$$\int \frac{1}{e^x} dx$$
 $\int \frac{1}{e^{3x+1}} dx$

c)
$$\int \frac{1}{\sqrt{x}} dx$$
 $\int \frac{2}{\sqrt{3x+5}} dx$

3. Find the area under each of the following curves over the indicated interval.

a)
$$f(x) = \frac{1}{3x+1}$$
 over [1,4]

b)
$$g(x) = \frac{1}{1+4x^2}$$
 over $[0, \frac{1}{2}]$

c)
$$\frac{1}{e^{2x+1}}$$
 over $[0,2]$

4. Find the area enclosed by the graph of each of the following curves in the first quadrant.

a) $f(x) = \sqrt{4 - x}$

b)
$$f(x) = \sqrt[3]{8-x}$$

c)
$$f(x) = -x^2 + 9$$

d)
$$f(x) = \sqrt{9 - x^2}$$

5. Find the area enclosed by each of the curves and above the x-axis.

a) $y = -x^2 + x + 2$

b) $y = x^3 - 6x^2 + 8x$