
Math 1300: Calculus I Introduction to applied optimization

1. A farmer has 2400 feet of fencing and wants to use it to fence off a rectangular field. What
are the dimensions of the field that has the largest area, and what is that largest area?
The goal is to model this situation with a function (like we did in Project 1), then use the
techniques of Chapter 4 to find the absolute maximum.

Step 1: Draw a picture of several possible fields. Label the pictures by assigning variables to
any quantities that change. List any other variables that might be important.

Solution: Where l is length, w is width, and A is area.

w = 600 ft
A = 360, 000 ft

l = 600 ft

w = 300 ft
A = 270, 000 ft

l = 900 ft

w = 150 ft
A = 157, 500 ft

l = 1050 ft

Step 2: Which quantity from the previous part is the one that we want to maximize?

Solution: We need to maximize area, the A variable.

Step 3: Use basic geometry to write a formula for the variable you named in the previous part. If
you end up with a function that has two independent variables (input variables), that’s
a problem we will have to fix in the next step.

Solution: A = l × w
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Step 4: Turn the constraint that we have only 2400 feet of fencing into an equation. Then use
this equation to eliminate one of the variables in Step 3. You now have a function of
one independent variable (input variable), and this is the function to maximize.

Solution: Perimeter = 2 · l + 2 · w, so we have 2400 = 2 · l + 2 · w. Solving for l, we
have

l = 1200− w.

We now plug this into our equation for A to get

A = (1200− w)w.

This is the equation we want to maximize.

Step 5: What is the domain? (Step 6 will be easier if you actually allow the possibility of “silly”
rectangles with no area).

Solution: We only have 2400 feet of fencing to work with, so we must have w+l ≤ 1200.
It only makes sense for l ≥ 0, and w is biggest when l is smallest. So taking l = 0, we see
that w ≤ 1200. The domain is [0, 1200]. We include the endpoints because it is easier to
find a maximum on a closed interval, and A is defined at the endpoints.

Step 6: Use one of the procedures you know to find the absolute maximum value on the domain.

Solution: We first find dA
dw = 1200 − 2w. We set this equal to zero and solve for w

to find the critical point w = 600. Finally, we evaluate A for w = 0, w = 600, and
w = 1200. A(0) = 0 ft2, A(600) = 360, 000 ft2, and A(1200) = 0 ft2. Therefore, A has a
maximum value of 360, 000 ft2 when w = 600 ft.

Step 7: Answer the questions asked: what are the dimensions of the field that has the largest
area, and what is the largest area?

Solution: Putting everything together, we see that if w = 600 ft then l = 600 ft.
Therefore, the dimensions which maximize the area of a field with a perimeter of 2400
ft are 600 ft× 600 ft field with a maximum area of 360, 000 ft2.
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2. A farmer has 2400 feet of fencing and this time wants to fence off a rectangular field that
borders a straight river. The farmer needs no fence along the river. What are the dimensions
of the field that has the largest area, and what is that largest area? (This problem is similar
to problem 2; use the same sequence of steps in your solution.) Explain why your answer is
different from Problem 1.

Solution: We need to maximize area, so we’ll maximize A = l × w. We are given the
constraint 2400 = 2l+w (Note: we only need one width since the other is covered by the river).

We need to use the constraint to eliminate one of the right hand side variables. Solv-
ing the constraint for w we have w = 2400− 2l. Substituting this into the area equation we
have A = l(2400− 2l).

We only have 2400 feet of fencing to work with, so we must have 2l + w ≤ 2400. It
only makes sense for w ≥ 0, so taking w = 0, we see that l ≤ 1200. Since it doesn’t make
sense to have negative lengths of fencing, the domain is [0, 1200]. Notice again we are including
the “silly” rectangles corresponding to the endpoints of the interval to make the math simpler.

Now we can maximize A = l(2400 − 2l) by solving dA
dl = 0 for l and comparing the

critical points to the end points of the domain. dA
dl = 2400 − 4l; solving 0 = 2400 − 4l gives

us the critical point l = 600.

Finally, we evaluate A for l = 0, l = 600, and l = 1200. A(0) = 0 ft2, A(600) = 720, 000 ft2,
and A(1200) = 0 ft2. Therefore, A has a maximum value of 720, 000 ft2 when l = 600 ft and
w = 1200 ft.

The field with maximum area is different than in the previous problem, since we had
to fence only one of the horizontal segments. It makes sense that the field would be longer
in this direction since it requires less fencing. Notice that the total amount of fencing used
in the vertical direction is the same as the amount used in the horizontal direction.
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3. A square-bottomed box with no top has a fixed volume of 500 cm3 (1/2 Liter). What is the
minimum surface area?

Solution: We need to minimize surface area. The box will have a bottom with a surface
area of w2 and 4 sides with surface area l × w so we’ll minimize SA = w2 + 4l × w.

Our constraint is 500 = l × w2. Solving for l we have l = 500w−2. Substituting this
into the surface area function gives us SA = w2 + 4× 500w−2 × w = w2 + 2000w−1.

Domain: Both l and w must be non-negative. We also check the limitations that the
constraint might force on the domain. 500 = l×w2, so l = 500

w . This means that l cannot be
0. So the domain is l in the interval (0,∞). Note that in this case w = 0 cannot be added to
the domain, because SA not defined there.

Since we are looking for a absolute minimum on an open interval, we need to hope we only
have one critical point and that it is a local min. Luckily, setting dSA

dw = 2w − 2000w−2 = 0

and solving for w gives us only one the critical point w = 10. Now d2SA
dw2 (10) = 6 > 0 tells us

our critical point is a local minimum by the second derivative test. Thus it is also a absolute
minimum on the domain.Therefore a square-bottomed box with no top has a minimum
surface area of SA(10) = 100 + 2000/10 = 300 cm2.

4. As in the previous problem, a square-bottomed box with no top has a fixed volume of 500
cm3 (1/2 Liter). But this time the material for the bottom costs $2 per cm2 while the sides

cost $1 per cm2. What dimensions give the minimum cost?

Solution: This time we need to minimize cost. The box will have a bottom with a cost of
2w2 and 4 sides with a cost of l × w so we’ll minimize C = 2w2 + 4l × w.

Our constraint is 500 = l × w2. Solving for l we have l = 500w−2. Substituting this
into the cost function gives us C = 2w2 + 4× 500w−2 × w = 2w2 + 2000w−1.

Domain: Both l and w must be non-negative. We also check the limitations that the
constraint might force on the domain. 500 = l×w2, so l = 500

w . This means that l cannot be
0. So the domain is l in the interval (0,∞).

Since we are looking for a absolute minimum on an open interval, we need to hope we only
have one critical point and that it is a local min. Luckily, setting dC

dw = 4w − 2000w−2 = 0

and solving for w gives us only one the critical point w = 3
√

500. Now d2C
dw2 ( 3
√

500) > 0 tells
us our critical point is a local minimum by the second derivative test. Thus it is also a
absolute minimum on the domain. Therefore the minimum cost occurs when w = 3

√
500 and

l = 3
√

500.
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