QUANTUM GROUPOIDS

Thomas Timmermann March 25, 2017

Westfälische Wilhelms-Universität Münster

WHAT IS A QUANTUM GROUPOID?

FROM GROUPS TO QUANTUM GROUPS

a semigroup is a space F with a map $F \times F \xrightarrow{m} F$ s.t.

 $\begin{array}{c|c} \operatorname{id} \times m & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

a finite group is a semigroup with a unit and inversion map

locally compact group

topology or measure (Weil)

Quantum

bialgebra is an algebra A with a morphism $A \xrightarrow{\Delta} A \otimes A$ s: $A \xrightarrow{\Delta} A \otimes A$ $\Delta = 0$

 $A \otimes A \xrightarrow{} A \otimes A \otimes A$

Hopf algebra is a bialgebra

Iocally compact quantum group is a Company bialgebra a with left right Haar weights

AXIOMATICS

GROUPOID

basic ingredients

- a base space G^0
- \cdot a total space G
- a target map $G \xrightarrow{t} G^0$
- a source map $G \xrightarrow{s} G^0$
- a multiplication $G_s \times_t G \xrightarrow{m} G$

- \cdot a base algebra B
- \cdot a total algebra A
- a target morphism $B \xrightarrow{\alpha} A$
- a source morphism $B^{\text{op}} \xrightarrow{\beta} A$

QUANTUM GROUPOID

• a comultiplication $A \rightarrow A_{\beta} \times_{\alpha} A$ (if $A \bigcirc H$, then $A_{\beta} \times_{\alpha} A \bigcirc H_{\beta} \otimes_{\alpha} H$)

basic assumptions

- \cdot associativity of *m*
- $\cdot t(\gamma \gamma') = t(\gamma)$
- $\cdot \operatorname{S}(\gamma\gamma') = \operatorname{S}(\gamma')$

- \cdot coassociativity of Δ
- $\cdot \Delta(\alpha(b)) = \alpha(b) \otimes 1$
- $\cdot \Delta(\beta(b^{\operatorname{op}})) = 1 \otimes \beta(b^{\operatorname{op}})$
- $\cdot [\alpha(B), \beta(B^{op}] = 0$

1

Associated to a finite groupoid *G*, we have two quantum groupoids:

The Function Algebra

base algebra and total algebra:	C(G ⁰) and C(G),	where $\delta_g \delta_{g'}$ is $\delta_{g,g'} \delta_g$
target map and source map:	$C(G^0) \rightrightarrows C(G),$	pull-back along t or s
comultiplication:	$C(G) \to C(G^{(2)}),$	$\delta_{\gamma} \mapsto \sum_{\gamma = \gamma' \gamma''} \delta_{\gamma'} \otimes \delta_{\gamma''}$

The Groupoid Algebra

	base algebra and total algebra:	$\mathbb{C}G^0$ and $\mathbb{C}G$,	where $g \cdot g'$ is gg' or 0
	target map and source map:	$\mathbb{C}G^0 \hookrightarrow \mathbb{C}G$,	the natural inclusion
	comultiplication:	$\mathbb{C}G\to\mathbb{C}(G\ast G),$	$g \mapsto g \otimes g$
(G * G: all pairs (g, g') with same source, same target)			

WHY study quantum groupoids?

VARIANTS OF QUANTUM GROUPOIDS AND WHERE APPEARED

finite quantum groupoids (Nikshych & Vainerman, Böhm,)	invariants of 3-manifolds (Turaev)
partial compact quantum groups (De Commer & T.)	
dynamical quantum groups Etingof & Varchenko, Koelink & Rosengren,)	
measured quantum groupoids (Enock & Lesieur & Vallin)	
<mark>algebraic quantum groupoids</mark> (Lu, Xu, Böhm & Szlachányi, T. & Van Daele)	

(

Work improgress Cl-algebraic theory of locally compact quantum groupoids

4

HOW ABOUT EXAMPLES?

A QUANTUM GROUPOID FROM CLASSICAL DATA

• For every space *X*, the full equivalence relation *X* × *X* is a groupoid:

- If Γ acts freely on X, then $(X \times X)/\Gamma$ is a groupoid over X/Γ .
- For any action of a group Γ on X, we get a quantum groupoid

 $C_0(X) \Rightarrow C_0(X) \rtimes \Gamma \ltimes C_0(X)$

with comultiplication $f \rtimes \gamma \ltimes f' \mapsto (f \rtimes \gamma \ltimes 1) \otimes (1 \rtimes \gamma \ltimes f')$

• Roughly, if a quantum group Γ acts on an algebra *B*, we get a quantum groupoid $B \rtimes \Gamma \ltimes B^{op}$ with base *B*.

QUANTUM TRANSFORMATION GROUPOIDS

• If a group Γ acts on a space X, we get a transformation groupoid X $\times \Gamma$

with groupoid algebra $C_0(X) \rtimes \Gamma$ and function algebra $C_0(X) \otimes C_0(\Gamma)$

• If Γ acts on an algebra *B*, we get crossed product with canonical maps $B \to B \rtimes \Gamma \to (B \rtimes \Gamma) \otimes \mathbb{C}\Gamma$

To obtain a quantum transformation groupoid, we also need a map $B^{op} \rightarrow B \rtimes \Gamma, \quad b^{op} \mapsto \sum_{\gamma} b_{\gamma} \rtimes \gamma$

whose image commutes with $b' \rtimes e$ for all $b' \in B$, i.e., $b'b_{\gamma} = b_{\gamma}\gamma(b')$.

• Roughly, if Γ is a quantum group and *B* a braided-commutative Yetter-Drinfeld algebra, we obtain quantum transformation groupoids $B \rtimes \Gamma$ and $B \rtimes \hat{\Gamma}$.

A DEFORMATION OF $s^2 \rtimes su(2)$

• An important compact quantum group is $SU_q(2)$, where $q \in (0, 1]$:

•
$$C(SU_q(2)) = C^*\left(\alpha, \gamma: \text{ the matrix } u := \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \text{ is unitary} \right)$$

• $\Delta: C(SU_q(2)) \rightarrow C(SU_q(2)) \otimes C(SU_q(2))$ given by $u_{ij} \mapsto \sum_k u_{ik} \otimes u_{kj}$

• We have an inclusion $\mathbb{T} \hookrightarrow SU_q(2)$ in the form of a *-homomorphism

 $C(SU_q(2)) \xrightarrow{\pi} C(\mathbb{T})$ given by $\alpha \mapsto z$ and $\gamma \mapsto 0$,

and obtain a quantum homogeneous space $S_q^2 = \mathbb{T} \setminus SU_q(2)$ in form of $C(S_q^2) = \{f \in C(SU_q(2)) : (\pi \otimes id)\Delta(f) = 1 \otimes f\},$

which is a braided-commutative Yetter-Drinfeld algebra for $SU_q(2)$.

• We get a measured quantum groupoid $\mathcal{G} = L^{\infty}(S_q^2) \rtimes SU_q(2)$, and $\mathcal{G} = L^{\infty}(\mathbb{T} \setminus SU_q(2)) \rtimes SU_q(2) \sim_M \mathbb{T} \ltimes L^{\infty}(SU_q(2)/SU_q(2)) = L\mathbb{T}.$

UNIVERSAL SYMMETRIES

• A f.d. algebra *D* has a quantum automorphism group QAut(*D*) = *A* with an action, that is, a homomorphism $D \xrightarrow{\delta} D \otimes A$ such that

that is universal (every quantum group action on D is a quotient).

- For example, $QAut(\mathbb{C}^n)$ is called a quantum permutation group.
- For every map $E \rightarrow X$, we have an automorphism groupoid

$$\operatorname{Aut}(E \to X) = \prod_{x,y \in X} \operatorname{Iso}(E_x, E_y)$$

• To an inclusion of f.d. algebras $B \hookrightarrow D$, we can associate a quantum automorphism groupoid QAut $(B \hookrightarrow D)$ with a universal action on D.