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Today’s Question

• For two orbifolds G and H , can we define mapping object
Map(G,H) which is itself an orbifold?
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Orbifolds

• [Satake, 1956] Orbifolds (V-manifolds) defined as spaces
with ‘mild’ singularities

• Given by an underlying space with an atlas of charts and
embeddings.

• ‘Mild singularity’: quotient of Euclidean space by the action
of a finite group.
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Topological Groupoids

• A topological groupoid has a space of object G0 and a
space of arrows G1, where all structure maps are
continuous

• G is étale when s (and hence t) is a local homeomorphism
• G is proper when the diagonal,

(s, t) : G1 → G0 × G0,

is a proper map (i.e., closed with compact fibers).



Modeling Orbifolds with Groupoids Orbispaces

Orbigroupoids

Definition

• A topological groupoid is an orbigroupoid if it is both étale
and proper.

• All isotropy groups are finite.
• The quotient space,

G1
s //

t
// G0 // // XG

is also called the underlying space of the orbigroupoid.
• This space is an orbifold.
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Examples
A G-point
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Examples
A Cone of Order 3

objects

id

2/3

1/3 morphisms

This is a translation groupoid, Z/3 n D.



Modeling Orbifolds with Groupoids Orbispaces

Examples
The Unit Interval

morphisms

objects



Modeling Orbifolds with Groupoids Orbispaces

Examples
A Split Unit Interval

morphisms

objects
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Examples
The Teardrop Groupoid
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Examples: The Triangular Billiard Groupoid T

Objects:

Quotient

e

σ

σρ

σρ2

(glueing via natural transformation)

Billiard groupoid

3 3 3*      *      *

3 3 3*      *      *
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Maps

We can define maps between topological groupoids as
continous groupoid functors

f0 : G0 → H0

and
f1 : G1 → H1

such that if g : x → y then f1(g) : f0(x)→ f0(y)
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Example

glueing arrows

I

I

L

R

glueing arrows

I

I

L

R
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Example

f

e

r

r2
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2-Cells
A 2-cell

α : f ⇒ f ′ : G⇒ H

is a continuous natural transformation.
This means a continuous map

α : G0 → H1

such that
• s ◦ α = f0 and t ◦ α = f ′0;
• (naturality) the squares commute

f0(sg)
f1(g) //

α(sg)
��

f0(tg)

α(tg)
��

f ′0(sg)
f ′1(tg)

// f ′0(tg)
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2-Cells and Underlying Maps

• If α : ϕ⇒ ψ : G → H then ϕ and ψ induce the same maps
between the underlying spaces.

• It is possible that f , f ′ : G⇒ H induce the same map on the
underlying spaces without being related by a 2-cell.
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The Groupoid GMap(G,H)

Let G and H be topological groupoids.
We can form a mapping groupoid GMap(G,H) of maps G to H
where

• M0 = continuous functors
• M1 = continuous natural transformations
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Topology on GMap(G,H)

• Space of functors

GMap(G,H)0 ⊂ Map(G0,H0) ×Map(G1,H1)

with elements
(f0, f1).

• Space of natural transformations

GMap(G,H)1 ⊂ GMap(G,H)0×Map(G0,H1)×GMap(G,H)0,

with elements
(f0, f1, α,g0,g1)
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Example: GMap(∗Z/2,T)

Maps from ∗Z/2 to the triangular billiard:

Objects:

Quotient

σ

σρ

σ

2

(glueing via natural transformation)

          
*  Morphisms in  Map(         , Billiard) 2
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boils down to conjugacy
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Example: GMap(∗Z/2,T)

• We obtain a copy of the original orbigroupoid T together
with a copy of the (trivial) Z/2-circle, S1

Z/2,
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From Orbigroupoids to Orbispaces
• The following two groupoids both represent the unit interval

as orbispace

morphisms

objects

morphisms

objects

• They are not isomorphic in the category of orbigroupoids
and groupoid homomorphisms.

• However, the groupoid homomorphism from the second to
the first is an essential equivalence.
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Essential Equivalences
• A morphism f : G → H is an essential equivalence when

it is essentially surjective and fully faithful.
• It is essentially surjective when G0 ×H0 H1 −→ H0 in

G0 ×H0 H1

��

// H1

s
��

t // H0

G0 f0
// H0

is an open surjection.

obj
������
������
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f may not be onto the objects of H , but every object in H0
is isomorphic to an object in the image of G0.
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Essential Equivalences
The morphism f : G → H is fully faithful when

G1
φ //

(s,t)
��

H1

(s,t)
��

G0 ×G0
φ×φ // H0 × H0

is a pullback,

HG

The local isotropy structure is preserved.



Modeling Orbifolds with Groupoids Orbispaces

Morita Equivalence

• The equivalence relation generated by the essential
equivalences is called Morita Equivalence

• Orbigroupoids represent the same orbispace iff they are
Morita equivalent

• To define a category of orbispaces, we use a bicategory
of fractions to invert the essential equivalences
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Generalized Maps
• Maps are generalized maps defined by spans

G
υ
←− K

ϕ
−→ H

where υ is an essential equivalence
• A 2-cell between two generalized maps is an (equivalence

class of) diagrams

K
υ

xx

ϕ

&&
G α1⇓ L

ν1

OO

ν2��

α2⇓ H

K ′
υ′

ff

ϕ′

88

where υν1 is an essential equivalence.
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Example
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Goals

1. Define a topology on the groupoid of generalized maps
OMap(G,H)

2. Show that composition induces a continuous map
Show that OMap is Morita invariant (will follow from 2)

3. Show that OMap(G,H) is an orbigroupoid (will require
compactness conditions)
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Approaches

• We originally planned to define the topology on OMap as a
pseudo-colimit

• We think this works (see Angel and Colman for path
spaces)

• While trying to prove via pseudo-colimit, we looked closely
at our bicategory of fractions

• We realized how nice this category actually was
• We switched to using its properties for a more direct

approach
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Goal 1: Defining a topology

• Problem: too many essential equivalences, we need a set
• Solution: Category Theory! [Bicategories of Fractions

Edition]
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Bicategories of Fractions

• We introduced weakened conditions for the existence of
bicategories of fractions [omitted here]

• We defined a cover of a class of arrows W
• We use weakened conditions to prove that when V covers
W then

B(W−1) ' B(V−1).

• For any given codomain, we can produce a set of arrows
that cover the essential equivalences
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A Cover of W

Definition
Let V ⊆ W be two classes of arrows in a bicategory B. The
class V is said to cover W if for each arrow w ∈ W, there is an
arrow v such that wv ∈ V.

∀

w∈W

##

v
∃

;;

wv∈V
//
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Essential Coverings

• open subsets U of G0 form an essential covering if the
map (jU)0 :

∐
U∈U U → G0 is essentially surjective

• Note that an essential covering does not necessarily cover
all of G0, but it meets every orbit.



Modeling Orbifolds with Groupoids Orbispaces

Essential Covering Maps
If U is an essential covering, we form a groupoid G∗(U) with a
groupoid homomorphism jU : G∗(U)→ G:

• G∗(U)0 =
∐

U∈U U;
• (jU)0 : G

∗(U)0 → G0 is defined by inclusions on the
connected components;

• G∗(U)1 is defined as the pullback,

G(U)1

(s,t)
��

(jU)1 // G1

(s,t)
��∐

U∈U U ×
∐

U∈U U
(jU)0×(jU)0

// G0 × G0.

• This makes the map jU : G∗(U)→ G an essential
equivalence.
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Example

e

j

e
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Theorem: Properties of Essential Covering Maps

• For any orbigroupoid G, there is a set of (non-repeating)
essential covering maps with codomain G.

• The essential covering maps cover the essential
equivalences between orbigroupoids.

• If W = essential equivalences and C = essential covering
maps. Then,

OrbiGrpds(W−1) ' OrbiGrpds(C−1)



Modeling Orbifolds with Groupoids Orbispaces

Corollary 1

• Given two orbigroupoids G and H , each orbimap

G Kw
oo

ϕ
// H

is isomorphic to one of the form,

G G∗(U)
jU

oo
ψ
// H

where U is an essential covering



Modeling Orbifolds with Groupoids Orbispaces

Corollary 2
• Any 2-cell from

G G∗(U)
jU

oo
ϕ
// H

to
G G∗(V)

jV
oo

ψ
// H

can be represented by a diagram of the form

G∗(U)
jU

tt

ϕ

**
G α G∗(W)

jW
U

OO

jW
V��

β H

G∗(V)
jV

jj

ψ

44

The essential coveringW can be viewed as an essential
refinement of U and V.
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Defining the Topology

Space of Objects:
• Let

CMap(G∗(U),G) ⊆ GMap(G∗(U),G)

the full subgroupoid on essential coverings, with the
subspace topology

• Define

OMap(G,H)0 =
∐
U

CMap(G∗(U),G)0×GMap(G∗(U),H)0,

where the coproduct is taken over all non-repeating
essential covers of G0.
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Defining the Topology

Space of Arrows: will be a quotient space of the space of
diagrams

G∗(U)
jU

tt

ϕ

**
G α G∗(W)

jW
U

OO

jW
V��

β H

G∗(V)
jV

jj

ψ

44

since 2-cells are defined by equivalence classes of diagrams
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Goal 2: Properties of Topology

We next want to show:
• Topology is Hausdorff
• Composition is continuous
• OMap is Morita invariant
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The Equivalence Relation
Given any two generalized maps

(w , f ) =
(
G G∗(U)

woo f //H

)
and

(w ′, f ′) =
(
G G∗(U′)

w ′oo f ′ //H

)
,

and ANY common essential refinement,

G∗(V)

α

sU,U′ //

tU,U′
��

G∗(U)

jU
��

G∗(U′)
jU′

// G
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The Equivalence Relation

every 2-cell (w , f )⇒ (w ′, f ′) can be represented uniquely by a
diagram of the form

G∗(U)

w

xx

f

&&
G αw ,w′ G∗(V)

sU,U′

OO

tU,U′
��

β H

G∗(U′)

w ′

ff

f ′

88

where αw ,w ′ = (γ′−1jU
′

V
) · α · (γjU

V
) for this particular chosen

common refinement
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The Mapping Groupoid OMap(G,H)

Let OMap(G,H) be the groupoid such that each object
corresponds to a span,

G G∗(U)
woo f // H

and each arrow corresponds to an equivalence class of
diagrams,

G∗(U)
jU

tt

ϕ

**
G α G∗(W)

jW
U

OO

jW
V��

β H

G∗(V)
jV

jj

ψ

44
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The Space of Arrows Redux

• Choose an essential common refinement

G∗(WU,U′)
sU,U′ //

tU,U′
��

α

G∗(U)

jU
��

G∗(U′)
jU′

// G

for each pair U,U′ of essential coverings of G0;
• Choose corresponding induced 2-cells α for each pair of

essential covering maps as above.
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The Space of Arrows

Then each element of the space of arrows is represented by a
unique diagram of the form

G∗(U)

w

vv

f

((
G αw ,w′ G∗(WU,U′)

sU,U′

OO

tU,U′
��

β H

G∗(U′)

w ′

hh

f ′

66

And the subspace of these diagrams is a retract, hence gives
the quotient topology
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The Space of Arrows

Write PU,U′ for the pseudo pullback of groupoids,

PU,U′ //

��
�

GMap(G∗(U),H)

s∗
U,V

��
GMap(G∗(U′),H)

t∗
U,U′

// GMap(G∗(WU,U′),H).

Then,

OMap(G,H)1 �
∐
U,U′

CMap(G∗(U),G)0×CMap(G∗(U′),G)0×(PU,U′)0.

In particular, this space is Hausdorff.
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Results: Composition

Proposition
Composition by a generalized map

(w , f ) = G G∗(U)
woo f //H induces continuous groupoid

maps between mapping groupoids,

(w , f )∗ : OMap(K ,G)→ OMap(K ,H)

and
(w , f )∗ : OMap(H ,L)→ OMap(G,L).
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Results: Morita Invariance

Theorem
Whenever G and G′ are Morita equivalent and H and H ′ are
Morita equivalent, the corresponding mapping groupoids

OMap(G,H) and OMap(G′,H ′)

are Morita equivalent.
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Goal 3: OMap as an orbigroupoid

• Just as for manifolds, we need G to be compact in an
appropriate sense.

• G is called orbit-compact when its underlying space
G0/G1 is compact.
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Results: Compact Case

• We can restrict to covers that are essentially compact:
finitely many connected open subsets of G0 such that the
closure of each of these open subsets in G0 is compact.

• When G is orbit-compact, we can replace the essential
covering maps by essentially compact covering maps and
define OMapc(G,H)
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Results: Compact Case

Theorem
If G is orbit-compact,

• OMapc(G,H) is étale and proper;
• The inclusion OMapc(G,H) ↪→ OMap(G,H) is an

essential equivalence;
• OMapc(G,H) is Morita invariant in both variables
• OMapc(G,H) has universal properties to be a mapping

object
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Example: OMap(∗Z/2,T)

• Since we know we only need invert essential covers, we
see that OMap(∗Z/2,T) = GMap(∗Z/2,T)
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