Obstructions to lifting cocycles on groupoids and the associated C^* -algebras

Marius Ionescu joint with Alex Kumjian

Groupoidfest, 2017, Boulder

United States Naval Academy

A B M A B M

Cocycles

- Let Γ be a locally compact Hausdorff groupoid and let G be a locally compact abelian group.
- Let $Z_{\Gamma}(G)$ be the collection of continuous cocycles $\phi: \Gamma \to G$, that is

$$\phi(\gamma_1\gamma_2) = \phi(\gamma_1) + \phi(\gamma_2).$$

• $Z_{\Gamma}(G)$ is an abelian group and the map $G \mapsto Z_{\Gamma}(G)$ is a functor.

Twists

Definition

Let A be an abelian group and Γ a groupoid. A *twist* by A over Γ is a central groupoid extension

$$\Gamma^0 \times A \xrightarrow{j} \Sigma \xrightarrow{\pi} \Gamma,$$

where $\Sigma^0 = \Gamma^0$, *j* is injective, π is surjective, and $j(r(\sigma), a)\sigma = \sigma j(s(\sigma), a)$.

A (10) × (10)

Twists

Definition

Let A be an abelian group and Γ a groupoid. A *twist* by A over Γ is a central groupoid extension

$$\Gamma^0 \times A \xrightarrow{j} \Sigma \xrightarrow{\pi} \Gamma,$$

where $\Sigma^0 = \Gamma^0$, *j* is injective, π is surjective, and $j(r(\sigma), a)\sigma = \sigma j(s(\sigma), a)$.

Example

The *semi-direct* product of Γ and A, $\Gamma \times A$, is a twist of Γ by A called the *trivial twist*.

Twists

Definition

Let A be an abelian group and Γ a groupoid. A *twist* by A over Γ is a central groupoid extension

$$\Gamma^0 \times A \xrightarrow{j} \Sigma \xrightarrow{\pi} \Gamma,$$

where $\Sigma^0 = \Gamma^0$, *j* is injective, π is surjective, and $j(r(\sigma), a)\sigma = \sigma j(s(\sigma), a)$.

Example

The *semi-direct* product of Γ and A, $\Gamma \times A$, is a twist of Γ by A called the *trivial twist*.

Fact

A twist Σ by A is properly isomorphic to a trivial twist if and only if there is a groupoid homomorphism $\tau : \Gamma \to \Sigma$ such that $\pi \tau = id_{\Gamma}$.

э

イロン イヨン イヨン

The group of twists

Definition

Let $T_{\Gamma}(A)$ be the collection of proper isomorphism classes of twists by A.

<日

<</p>

The group of twists

Definition

Let $T_{\Gamma}(A)$ be the collection of proper isomorphism classes of twists by A.

Fact

If $f \in \text{Hom}_{\Gamma}(A, B)$ and Σ is a twist by A, then there is a unique twist f_*B by B and a twist morphism $f_* : \Sigma \to f_*\Sigma$ which is compatible with f.

A B b A B b

The group of twists

Definition

Let $T_{\Gamma}(A)$ be the collection of proper isomorphism classes of twists by A.

Fact

If $f \in \text{Hom}_{\Gamma}(A, B)$ and Σ is a twist by A, then there is a unique twist f_*B by B and a twist morphism $f_* : \Sigma \to f_*\Sigma$ which is compatible with f.

Fact

 $T_{\Gamma}(A)$ is an abelian group under the operation

$$[\Sigma] + [\Sigma'] = \nabla^{\mathcal{A}}_*[\Sigma *_{\Gamma} \Sigma'],$$

where $\nabla^A : A \oplus A \to A$ is $\nabla^A(a, a') = a + a'$. Moreover, $A \mapsto T_{\Gamma}(A)$ is a half-exact functor.

Obstruction to lifting a cocycle

Example

- Let $p: B \to C$ be a homomorphism of abelian groups.
- Let $\phi \in Z_{\Gamma}(C)$.
- Define the obstruction twist

$$\Sigma_{\phi} = \{(\gamma, b) \in \mathsf{\Gamma} imes B : \phi(\gamma) = p(b)\}.$$

.

Obstruction to lifting a cocycle

Example

- Let $p: B \rightarrow C$ be a homomorphism of abelian groups.
- Let $\phi \in Z_{\Gamma}(C)$.
- Define the obstruction twist

$$\Sigma_{\phi} = \{(\gamma, b) \in \mathsf{\Gamma} imes B \, : \, \phi(\gamma) = \mathsf{p}(b)\}.$$

Lemma

1
$$\Sigma_{\phi}$$
 is a twist of Γ by $A := \ker p$.

- **2** Σ_{ϕ} is trivial if and only ϕ lifts to a *B*-valued cocycle.
- If Γ is étale and A is discrete then $Σ_{\phi}$ is étale. Moreover, if p is surjective then the projection $π_1 : Σ_{\phi} \to Γ$ is a surjective local homeomorphism.

- 4 同 6 4 日 6 4 日 6

Exact sequences

Lemma

lf

$$0 \to A \xrightarrow{i} B \xrightarrow{p} C \to 0$$

is a short exact sequence of abelian groups, then there is an exact sequence

$$0 \to Z_{\Gamma}(A) \xrightarrow{i_*} Z_{\Gamma}(B) \xrightarrow{p_*} Z_{\Gamma}(C) \xrightarrow{\delta} T_{\Gamma}(A),$$

where $\delta(\phi) := [\Sigma_{\phi}]$ for $\phi \in Z_{\Gamma}(C)$

Example I

Example

- Let A = Z, B = R, and C = T. Let X be a Hausdorff second countable locally compact space.
- Let $\mathcal{U} := \{U_i\}_{i \in I}$ be a locally finite cover of X. Set $U_{ij} := U_i \cap U_j$ for $i, j \in I$.
- Let $\Gamma_{\mathcal{U}} := \{(x, i, j) : x \in U_{ij}\}.$
- Suppose that $\lambda = {\lambda_{ij}}_{i,j \in I}$ is a Čech 1-cocycle with coefficients in \mathcal{T} .
- The map $\phi : \Gamma_{\mathcal{U}} \to \mathbb{T}$ given by $\phi((x, i, j)) = \lambda_{ij}(x)$ is a continuous groupoid 1-cocycle.

Example II

Example

- Suppose that each λ_{ij} lifts, that is, for each $i, j \in I$ there is a continuous function $\tilde{\lambda}_{ij} : U_{ij} \to \mathbb{R}$ such that $\lambda_{ij} = e \circ \tilde{\lambda}_{ij}$.
- The formula

$$(\lambda^{\star})_{ijk}(x) := \tilde{\lambda}_{ij}(x) + \tilde{\lambda}_{jk}(x) - \tilde{\lambda}_{ik}(x)$$

defines a Čech 2-cocycle with values in $\ensuremath{\mathbb{Z}}$

• One can defina a groupoid 2-cocycle ϕ^{\star} by the formula

$$\phi^{\star}((x,i,j),(x,j,k)) = (\lambda^{\star})_{ijk}(x)$$

Example III

Example

• Let Σ be the twist by \mathbb{Z} over $\Gamma_{\mathcal{U}}$ determined by ϕ^* :

 $\Sigma := \{(n, (x, i, j)) : n \in \mathbb{Z}, x \in U_{ij}\}.$ The structure maps are given by

$$(m, (x, i, j))(n, (x, j, k)) := (m + n + (\lambda^*)_{ijk}(x), (x, i, k))$$

 $(n, (x, i, j))^{-1} := (-n - (\lambda^*)_{jij}(x), (x, j, i)).$

• Then $\Sigma_{\phi} \simeq \Sigma$.

• • = • • = •

Strongly continuous action induced by a 1-cocycle

Lemma

Assume that C is a locally compact abelian group. Given $\phi \in Z_{\Gamma}(C)$, the map

$$\alpha_t^{\phi}(f)(\gamma) = \langle t, \phi(\gamma) \rangle f(\gamma),$$

for $f \in C_c(\Gamma)$, $t \in \widehat{C}$, and $\gamma \in \Gamma$ defines a strongly continuous action $\alpha^{\phi} : \widehat{C} \to \operatorname{Aut} C^*(\Gamma)$.

· · · · · · · · ·

Main Theorem

Theorem

Let Γ be a locally compact Hausdorff amenable groupoid endowed with Haar system $\{\lambda^u\}_{u\in\Gamma^0}$ and let

$$0 \to A \xrightarrow{i} B \xrightarrow{p} C \to 0,$$

be a short exact sequence of locally compact abelian groups. Let $\phi \in Z_{\Gamma}(C)$ and let Σ_{ϕ} be the obstruction twist endowed with the natural Haar system. Then $C^*(\Sigma_{\phi})$ is isomorphic to $\operatorname{ind}_{\hat{C}}^{\hat{B}} C^*(\Gamma)$.

The induced algebra

Definition

If H is a closed subgroup of a locally compact group G and (D, H, α) is a dynamical system, the *induced algebra* is

$$\operatorname{ind}_{H}^{G}(D,\alpha) = \{ f \in C^{b}(G,D) : f(sh) = \alpha_{h}^{-1}(f(s)) \\ \text{and } sH \mapsto \|f(s)\| \in C_{0}(G/H) \}.$$

The induced algebra

Definition

If *H* is a closed subgroup of a locally compact group *G* and (D, H, α) is a dynamical system, the *induced algebra* is

$$\mathsf{ind}_H^G(D, lpha) = \{ f \in C^b(G, D) : f(sh) = lpha_h^{-1}(f(s)) \$$

and $sH \mapsto \|f(s)\| \in C_0(G/H) \}.$

Fact

There is a canonical translation $\beta : G \to \operatorname{Aut}(\operatorname{ind}_{H}^{G}(D, \alpha))$ given by $\beta_{g}(f)(x) = f(x - g)$. Moreover, $D \rtimes_{\alpha} H$ is strongly Morita equivalent to $\operatorname{ind}_{H}^{G}(D, \alpha) \rtimes_{\beta} G$.

The induced algebra

- Point evaluation at 0 yields a surjective homomorphism $\pi : \operatorname{ind}_{H}^{G}(D, \alpha) \to D$ given by $\pi(f) = f(0)$.
- There is a natural translation action $\tau : G \to C_0(G/H)$ given by $\tau_g(k)(x+H) = k(x-g+H)$.
- There is a G-equivariant homomorphism
 j: C₀(G/H) → M(ind^G_H(D, α)) determined by pointwise multiplication.

It is easy to check that these maps satisfy the following conditions:

i. For all
$$k \in C_0(G/H)$$
, $\pi(j(k)f) = k(H)\pi(f)$;

ii. for all
$$h \in H$$
, $\pi(\beta_h(f)) = \alpha_h(\pi(f))$;

iii. if $\pi(\beta_g(f)) = 0$ for all $g \in G$, then f = 0;

iv. and

$$\lim_{x+H\to\infty}\|f(x)\|=0.$$

A characterization of the induced algebra

Theorem

Let H be a closed subgroup of G, let D be a C*-algebra, and let $\alpha : H \to \operatorname{Aut} D$ be a strongly continuous action. Let E be a C*-algebra, $\rho : E \to D$ a surjective homomorphism, $\gamma : G \to \operatorname{Aut}(E)$ a strongly continuous action and let $i : C_0(G/H) \to Z(M(E))$ be a G-equivariant homomorphism. Suppose that

- i For all $k \in C_0(G/H)$ and $e \in E$, $\rho(i(k)e) = k(H)\rho(e)$;
- ii For all $h \in H$ and $e \in E$, $\rho(\gamma_h(e)) = \alpha_h(\rho(e))$;

iii If
$$ho(\gamma_{m{g}}(e))=0$$
 for all $m{g}\in {\sf G}$, then $e=0$;

iv For all $e \in E$,

$$\lim_{\alpha + H \to \infty} \|\rho(\gamma_x(e))\| = 0.$$

Then there is a (unique) *G*-equivariant isomorphism $\Psi : E \to \operatorname{ind}_{H}^{G}(D, \alpha)$ such that: $\pi \circ \Psi = \rho$ and $j(k)\Psi(e) = \Psi(i(k)e)$ for all $k \in C_0(G/H)$ and $e \in E$.

ヘロア ヘロア ヘヨア

Amenability

Theorem

Assume that (Σ, β) is a closed subgroupoid of an amenable groupoid (Γ, λ) such that $\Sigma^0 = \Gamma^0$. Then the map $j : C^*(\Sigma) \to M(C^*(\Gamma))$ defined for $a \in C_c(\Sigma)$ and $f \in C_c(\Gamma)$ via

$$(j(a)(f))(\gamma) = \int_{\Sigma} a(\eta) f(\eta^{-1}\gamma) d\beta^{r(\gamma)}(\eta)$$

is faithful.

A B A A B A

Example

Example

- C^{*}(Γ_U) is a continuous trace algebra with Prim C^{*}(Γ_U) = X and trivial Dixmier-Douady invariant δ(C^{*}(Γ_U)) = 0.
- Let ϕ be the 1-cocycle defined by a Čech 1-cocycle λ_{ij}
- Let $\alpha : \mathbb{Z} \to \operatorname{Aut} C^*(\Gamma_{\mathcal{U}})$ be the action determined by ϕ .
- Then α can be shown to be locally unitary.

Example

Example

- C^{*}(Γ_U) is a continuous trace algebra with Prim C^{*}(Γ_U) = X and trivial Dixmier-Douady invariant δ(C^{*}(Γ_U)) = 0.
- Let ϕ be the 1-cocycle defined by a Čech 1-cocycle λ_{ij}
- Let $\alpha : \mathbb{Z} \to \operatorname{Aut} C^*(\Gamma_{\mathcal{U}})$ be the action determined by ϕ .
- $\bullet\,$ Then $\alpha\,$ can be shown to be locally unitary.
- Our theorem implies that $C^*(\Sigma_{\phi}) \cong \operatorname{ind}_{\mathbb{Z}}^{\mathbb{R}}(C^*(\Gamma_{\mathcal{U}}), \alpha).$
- From work of Rosenberg and Raeburn it follows that $C^*(\Sigma_{\phi})$ is a continuous trace algebra, Prim $C^*(\Sigma_{\phi}) \cong \mathbb{T} \times X$ and

$$\delta(\mathcal{C}^*(\Sigma_{\phi})) = z \times \eta(\alpha) = z \times [\lambda^*] \in \check{H}^3(\mathbb{T} \times X, \mathbb{Z})$$

where z is the standard generator of $\check{H}^1(\mathbb{T},\mathbb{Z})$, $[\lambda^*] \in \check{H}^2(X,\mathbb{Z}) = [\lambda] \in \check{H}^1(X,\mathcal{T})$, and $\eta(\alpha)$ is the Phillips-Raeburn obstruction.