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Introduction

Kuperberg’s flow is the flow of a C∞ aperiodic vector field on a
three-manifold called a plug.

This flow preserves a nontrivial minimal set with a fractal structure.

We use tools from conformal iterated function systems and
thermodynamic formalism to calculate the Hausdorff dimension of
this minimal set.
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History: Seifert’s conjecture

Seifert 1950: Does every nonsingular vector field on the three-sphere
S3 have a periodic orbit?

Wilson 1966: On any three-manifold there exists a nonsingular C∞

vector field with only 2 periodic orbits.

These orbits are contained inside a plug.
The plug is inserted to break periodic orbits outside the plug.

Schweitzer 1974: There exists an aperiodic C1 vector field on S3.

Harrison 1988: Constructed a C2 counterexample.

Kuperberg 1994: Constructed a C∞ counterexample.

Modified Wilson’s plug by self-insertion
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Wilson’s minimal set

Two periodic orbits
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Kuperberg’s minimal set

Cross-section of Kuperberg minimal set

Hurder and Rechtman 2015:
Kuperberg’s minimal set is a
surface lamination with a
Cantor transversal.

Question: What is the
Hausdorff dimension of this
minimal set?

Approach: Modeling the
transverse Cantor set as the
attractor of an iterated function
system (IFS).

This IFS is defined in terms of
a pseudogroup of first-return
maps to a section of the flow.
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Iterated Function Systems

A collection S = {φi : X → X}i∈I of injective contractions of a compact
metric space X is an IFS.

For ω ∈ In, denote

φω = ω1 ◦ · · · ◦ ωn

Then J =
⋂∞
n=1

⋃
ω∈In φω(X) is the limit set of S.

J is invariant under S.

If S satisfies the open set condition and the bounded distortion
property, then J is a Cantor set.

Nesting condition: φω,i(X) ⊂ φω(X).

If X is a manifold and φi are C1+α, then S has bounded distortion.

Necessary to assume that φi are conformal (CIFS).
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Topological Pressure of a CIFS

Each CIFS S has an associated topological pressure:

P (t) = lim
n→∞

1

n
log

∑
ω∈In
‖φ′ω‖t

The limit exists by bounded distortion.

P : [0,∞)→ R is continuous, convex, and strictly decreasing.

Theorem (Bowen 1979):

Let s = dimH(J). Then s is the unique solution of P (s) = 0.

The proof uses thermodynamic formalism of Sinai and Ruelle:
conformal measures with good ergodic properties supported on J .

Mauldin and Urbański (1996) extended this formalism to countable
alphabets I.
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Wilson’s plug

Wilson’s plug W is the product of a rectangle E in coordinates (r, z) and
circle with coordinate θ.

On the plug, we define the Wilson vector field W = f ∂
∂θ + g ∂

∂z , with
f, g : E → R.

f is odd about z = 0

g decays to zero inside each Bi, at r = 2.
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Dynamics of the Wilson flow

Let φt be the flow of W. There are three orbit types for φt.

Disjoint from Bi’s

Intersecting Bi’s with r 6= 2

Intersecting Bi’s with r = 2
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The Wilson pseudogroup

Let Φ : E → E be the first return map of φt to E.

E is not a global section for φt.

Φ is not defined on all of E.

Φ is not continuous everywhere it is defined.

Φn is not defined for every n, even when Φ is defined.

Φ generates a pseudogroup which reflects dynamics of φt.
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Kuperberg’s plug

To construct a plug with no periodic orbits, Kuperberg inserted the
Wilson plug into itself. The resulting plug K inherits a vector field K
with flow ψt.
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Dynamics of the Kuperberg flow

Kuperberg (1994):

The C∞ vector field K has no closed orbits.

As with Wilson pseudogroup Φ, we obtain the Kuperberg
pseudogroup generated by Ψ : R0 → R0.

Ψ is generated by three maps: the Wilson return map Φ, as well as
the insertion maps σ1 and σ2.

12 / 17



Dynamics of the Kuperberg flow

Kuperberg (1994):

The C∞ vector field K has no closed orbits.

As with Wilson pseudogroup Φ, we obtain the Kuperberg
pseudogroup generated by Ψ : R0 → R0.

Ψ is generated by three maps: the Wilson return map Φ, as well as
the insertion maps σ1 and σ2.

12 / 17



Dynamics of the Kuperberg flow

Kuperberg (1994):

The C∞ vector field K has no closed orbits.

As with Wilson pseudogroup Φ, we obtain the Kuperberg
pseudogroup generated by Ψ : R0 → R0.

Ψ is generated by three maps: the Wilson return map Φ, as well as
the insertion maps σ1 and σ2.

12 / 17



The Kuperberg minimal set I

Ghys 1995: conjectured that the Kuperberg flow has a unique
minimal set M with topological dimension 2.

Hurder and Rechtman 2015: M has the structure of a zippered
lamination by surfaces with radial Cantor transversal.

Let Σi ⊂ K be the special orbits for i = 1, 2. Then M = Σ1 = Σ2.
We may choose a curve γ in the cylinder {r = 2} ⊂ K so that

M =
⋃

−∞<t<∞

ψt(γ).

The second characterization allows us to stratify the minimal set
into propellers corresponding to each level of insertion.

M =

∞⋃
n=1

Mn
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Level-one propeller P1

Cross-section of P1

Curves are images under powers
of Φ, the generator of the
Wilson pseudogroup

Propeller P1 bounds a closed
region A1.

The pseudogroup Ψ contracts
P1 in the radial direction.

Infinite returns of the propeller
implies symbolic dynamics on
an infinite alphabet.
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Level-two propeller P2

Cross-section of P2

Curves are images under one
insertion σ of powers of Φ.

Propeller P2 bounds a family of
closed regions A2,i.

Nesting property: A2,i ⊂ Ai
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Dimension estimates on M

Theorem (I.)

Let C ⊂ [0, 1] be the transverse Cantor set of M.

There exists a CIFS on [0, 1] with limit set C.

s = dimH(C) is the unique root of a dynamically defined pressure
function.

0.5877 ≤ dimH(C) ≤ 0.8643.

Corollary: 2.5877 ≤ dimH(M) ≤ 2.8643.
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