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m Kuperberg's flow is the flow of a C'* aperiodic vector field on a
three-manifold called a plug.

m This flow preserves a nontrivial minimal set with a fractal structure.

m We use tools from conformal iterated function systems and
thermodynamic formalism to calculate the Hausdorff dimension of
this minimal set.
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History: Seifert's conjecture

m Seifert 1950: Does every nonsingular vector field on the three-sphere
52 have a periodic orbit?

m Wilson 1966: On any three-manifold there exists a nonsingular C'*°
vector field with only 2 periodic orbits.

m These orbits are contained inside a plug.
m The plug is inserted to break periodic orbits outside the plug.

m Schweitzer 1974: There exists an aperiodic C! vector field on S3.
m Harrison 1988: Constructed a C? counterexample.

m Kuperberg 1994: Constructed a C'°° counterexample.
m Modified Wilson's plug by self-insertion
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Cross-section of Kuperberg minimal set

Hurder and Rechtman 2015:
Kuperberg's minimal set is a
surface lamination with a
Cantor transversal.

Question: What is the
Hausdorff dimension of this
minimal set?

Approach: Modeling the
transverse Cantor set as the
attractor of an jterated function
system (IFS).

This IFS is defined in terms of
a pseudogroup of first-return
maps to a section of the flow.
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lterated Function Systems

A collection S = {¢; : X — X };er of injective contractions of a compact
metric space X is an IFS. For w € I"™, denote

¢y =wW1 00wy

Then J =2, Upern ¢w(X) is the limit set of S.
m J is invariant under S.

m If S satisfies the open set condition and the bounded distortion
property, then J is a Cantor set.

Nesting condition: ¢, ;(X) C ¢u(X).
If X is a manifold and ¢; are C'*®, then S has bounded distortion.
Necessary to assume that ¢; are conformal (CIFS).

6/17
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Each CIFS S has an associated topological pressure:

I T 1 /||t
P(t) = lim ~log Y [[¢L

weln

m The limit exists by bounded distortion.

m P:[0,00) — R is continuous, convex, and strictly decreasing.

Theorem (Bowen 1979):
Let s = dimg(J). Then s is the unique solution of P(s) = 0.

m The proof uses thermodynamic formalism of Sinai and Ruelle:
conformal measures with good ergodic properties supported on J.

m Mauldin and Urbaniski (1996) extended this formalism to countable
alphabets I.
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Wilson's plug

Wilson's plug W is the product of a rectangle E' in coordinates (r, z) and
circle with coordinate 6.

/ Al
W

E

On the plug, we define the Wilson vector field W = f % +g %, with
f,9: E—R.

m f is odd about z =0

m g decays to zero inside each B;, at r = 2.
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Let ¢; be the flow of W. There are three orbit types for ¢;.

m Disjoint from B;'s

m Intersecting B;'s with r # 2

m Intersecting B;'s with r = 2
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The Wilson pseudogroup

Let @ : E — E be the first return map of ¢; to E.

m FE is not a global section for ¢;.

m O is not defined on all of E.

m ® is not continuous everywhere it is defined.

m ®" is not defined for every n, even when & is defined.

m P generates a pseudogroup which reflects dynamics of ¢;.
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Kuperberg's plug

To construct a plug with no periodic orbits, Kuperberg inserted the
Wilson plug into itself. The resulting plug K inherits a vector field 1C
with flow ;.
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Dynamics of the Kuperberg flow

Kuperberg (1994):

The C* vector field K has no closed orbits.

m As with Wilson pseudogroup ®, we obtain the Kuperberg
pseudogroup generated by ¥ : Ry — Ry.

m U is generated by three maps: the Wilson return map @, as well as
the insertion maps o1 and os.



The Kuperberg minimal set |

m Ghys 1995: conjectured that the Kuperberg flow has a unique
minimal set M with topological dimension 2.

13/17



The Kuperberg minimal set |

m Ghys 1995: conjectured that the Kuperberg flow has a unique
minimal set M with topological dimension 2.

m Hurder and Rechtman 2015: M has the structure of a zippered
lamination by surfaces with radial Cantor transversal.

13/17



The Kuperberg minimal set |

m Ghys 1995: conjectured that the Kuperberg flow has a unique
minimal set M with topological dimension 2.

m Hurder and Rechtman 2015: M has the structure of a zippered
lamination by surfaces with radial Cantor transversal.

m Let 3; C K be the special orbits for i = 1,2. Then M =%, = %s.

13/17



The Kuperberg minimal set |

m Ghys 1995: conjectured that the Kuperberg flow has a unique
minimal set M with topological dimension 2.

m Hurder and Rechtman 2015: M has the structure of a zippered
lamination by surfaces with radial Cantor transversal.

m Let 3; C K be the special orbits for i = 1,2. Then M =%, = %s.
m We may choose a curve 7 in the cylinder {r = 2} C K so that

M= U pe(7)-

—oo<t<oo

13/17



The Kuperberg minimal set |

m Ghys 1995: conjectured that the Kuperberg flow has a unique
minimal set M with topological dimension 2.

m Hurder and Rechtman 2015: M has the structure of a zippered
lamination by surfaces with radial Cantor transversal.

m Let 3; C K be the special orbits for i = 1,2. Then M =%, = %s.
m We may choose a curve 7 in the cylinder {r = 2} C K so that

M= U pe(7)-

—oo<t<oo

m The second characterization allows us to stratify the minimal set
into propellers corresponding to each level of insertion.

MzGMn

n=1
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Level-one propeller P,

m Curves are images under powers
of ®, the generator of the
Wilson pseudogroup

m Propeller P; bounds a closed
region Aj.

m The pseudogroup ¥ contracts
Pj in the radial direction.

m Infinite returns of the propeller
implies symbolic dynamics on
an infinite alphabet.

Cross-section of Py
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Level-two propeller P,

Cross-section of P»

m Curves are images under one
insertion o of powers of ®.

m Propeller P, bounds a family of
closed regions As ;.

m Nesting property: As; C A;
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Dimension estimates on M

Theorem (1.)
Let C C [0, 1] be the transverse Cantor set of M.

m There exists a CIFS on [0, 1] with limit set C'.

m s = dimg(C) is the unique root of a dynamically defined pressure
function.

m 0.5877 < dimp (C) < 0.8643.
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Dimension estimates on M

Theorem (1.)

Let C C [0, 1] be the transverse Cantor set of M.
m There exists a CIFS on [0, 1] with limit set C'.

m s = dimg(C) is the unique root of a dynamically defined pressure
function.

m 0.5877 < dimp (C) < 0.8643.

Corollary: 2.5877 < dimg (M) < 2.8643.
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