Hilbert C*-Modules over Groupoid Dynamical Systems and Square-Integrable Representations

Leonard Huang

Groupoidfest 2017 University of Colorado Boulder

March 26, 2017

Summary of Talk

2 Bundles

- Banach Bundles
- C*-Bundles
- Bundles of Hilbert C*-Modules
- An Equivalence of Categories

Square-Integrable Representations of Groupoid Dynamical Systems

- Groupoids and Groupoid Dynamical Systems
- Hilbert C*-Modules over a Groupoid Dynamical System
- Bra-Ket Operators and Square-Integrability

We first review the definitions and properties of Banach bundles and C^* -bundles.

We then introduce the concept of a bundle of Hilbert C^* -modules over a C^* -bundle.

After developing enough machinery concerning such bundles of Hilbert C^* -modules, we describe how to use them to construct a theory of square-integrable representations of groupoid dynamical systems.

Definition (Banach Bundles [Fell & Doran, 1988])

Let X be a locally compact Hausdorff space. A Banach bundle over X is a pair (\mathcal{B}, p) with the following properties:

- \mathscr{B} is a topological space, and p is a continuous open surjection from \mathscr{B} onto X.
- For each x ∈ X, the pre-image p[←][{x}] of x via p, which we denote by B_x and call the fiber of B over x, has the structure of a Banach space.
- The map $\begin{cases} \mathscr{B} \to \mathbb{R} \\ b \mapsto \|b\|_{p(b)} \end{cases}$ is upper semicontinuous. • The map $\begin{cases} \mathscr{B}^{(2)} \to \mathscr{B} \\ (b_1, b_2) \mapsto b_1 + b_2 \end{cases}$ is continuous, where $\mathscr{B}^{(2)} := \{(b_1, b_2) \in \mathscr{B} \times \mathscr{B} \mid p(b_1) = p(b_2)\}.$ • For each $\lambda \in \mathbb{C}$, the map $\begin{cases} \mathscr{B} \to \mathscr{B} \\ b \mapsto \lambda \cdot b \end{cases}$ is continuous. • If $(b_i)_{i \in I}$ is a net in \mathscr{B} such that $\|b_i\|_{p(b_i)} \to 0$ and $p(b_i) \to x$ for some $x \in X$,

Definition (C*-Bundles [Williams, 2007])

A C^{*}-bundle over a locally compact Hausdorff space X is just a Banach bundle (\mathcal{A}, p) over X with the following additional properties:

• For each $x \in X$, the fiber \mathscr{A}_x is a C^* -algebra.

• The map $\begin{cases} \mathscr{A} \to \mathscr{A} \\ a \mapsto a^* \end{cases}$ is continuous. • The map $\begin{cases} \mathscr{A}^{(2)} \to \mathscr{A} \\ (a_1, a_2) \mapsto a_1 a_2 \end{cases}$ is continuous.

Given a C^* -bundle (\mathscr{A}, p) over a locally compact Hausdorff space X, the set $\Gamma_0(\mathscr{A}, p)$ of continuous sections of (\mathscr{A}, p) that vanish at infinity is a C^* -algebra.

In fact, $\Gamma_0(\mathscr{A}, p)$ is a $C_0(X)$ -algebra, i.e., there is a non-degenerate *-homomorphism from $C_0(X)$ to the center of the multiplier algebra of $\Gamma_0(\mathscr{A}, p)$.

Given a locally compact Hausdorff space X, it is a deep result that any $C_0(X)$ -algebra is *-isomorphic to $\Gamma_0(\mathscr{A}, p)$ for some C*-bundle (\mathscr{A}, p) over X.

Bundles of Hilbert C^* -Modules

From now on, (\mathscr{A}, p) denotes a C^* -bundle over a locally compact Hausdorff space X.

Definition (Bundles of Hilbert C^* -Modules (H., 2017))

An (\mathscr{A}, p) -bundle of Hilbert C^{*}-modules over X is defined as a Banach bundle (\mathscr{E}, q) over X with the following additional properties:

• For each $x \in X$, the fiber \mathscr{E}_x is a Hilbert \mathscr{A}_x -module.

• The map
$$\begin{cases} \mathscr{E}_{q} \times_{p} \mathscr{A} & \to & \mathscr{E} \\ (\zeta, a) & \mapsto & \zeta \bullet a \end{cases}$$
 is continuous, where
$$\mathscr{E}_{q} \times_{p} \mathscr{A} := \{(\zeta, a) \in \mathscr{E} \times \mathscr{A} \mid q(\zeta) = p(a)\}.$$

• The map
$$\begin{cases} \mathscr{E}^{(2)} & \to & \mathscr{A} \\ (\zeta, \eta) & \mapsto & \langle \zeta, \eta \rangle_{\mathscr{E}_{p(\zeta)}} \end{cases}$$
 is continuous.

Given an (\mathscr{A}, p) -bundle (\mathscr{E}, q) of Hilbert C^* -modules over X, it can be shown that the set $\Gamma_0(\mathscr{E}, q)$ of continuous sections of (\mathscr{E}, q) that vanish at infinity is actually a Hilbert $\Gamma_0(\mathscr{A}, p)$ -module.

Question: Is the converse true?

Constructing Bundles of Hilbert C^* -Modules

• Let \mathcal{E} be a Hilbert $\Gamma_0(\mathscr{A}, p)$ -module.

- For each x ∈ X, let I_x denote the set of sections in Γ₀(𝔄, p) that vanish at x, i.e., for any σ ∈ I_x, we have σ(x) = 0_x.
- Then I_x is an ideal of Γ₀(𝔄, p), and 𝔅_x := {ζ ∈ 𝔅 | ⟨ζ, ζ⟩_𝔅 ∈ I_x} is a closed linear subspace of 𝔅 that is easily shown to be a Hilbert I_x-module.
- Hence, the quotient space $\mathcal{E}/\mathcal{E}_x$ is a Hilbert \mathscr{A}_x -module (as $\Gamma_0(\mathscr{A}, p)/I_x \cong \mathscr{A}_x$).
- Form the disjoint union $\mathscr{E} := \bigsqcup_{x \in X} \mathcal{E}/\mathcal{E}_x$, and define $q : \mathscr{E} \to X$ by $q(\zeta + \mathcal{E}_x) := x$ for all $\zeta \in \mathcal{E}$ and $x \in X$.
- Then (\mathscr{E}, q) is a bundle of Hilbert C^* -modules over X, but with no topology yet.
- Now, $\Delta := \{ (\zeta + \mathcal{E}_x)_{x \in X} \mid \zeta \in \mathcal{E} \}$ is a collection of sections of (\mathscr{E}, q) such that: • The map $\begin{cases} X \to \mathbb{R}_{\geq 0} \\ x \mapsto \|\sigma(x)\|_{\mathscr{E}_x} \end{cases}$ is upper semicontinuous for each $\sigma \in \Delta$.
 - For each $x \in X$, $\{\sigma(x) \mid \sigma \in \Delta\}$ is a dense subset (in fact, all) of \mathscr{E}_x .
- By a theorem of Fell, one can define a unique topology on *&* so that each section in Δ is continuous. Furthermore, under this topology, Δ = Γ₀(*&*, *q*), which can be proven using a partition-of-unity argument found in [Williams, 2007].

Constructing Bundles of Hilbert C*-Modules (Cont'd)

Finally, one verifies that (\mathscr{E}, q) is an (\mathscr{A}, p) -bundle of Hilbert C^* -modules over X.

Proposition (H., 2017)

 ${\mathcal E}$ and $\Gamma_0({\mathcal E},q)$ are unitarily isomorphic as Hilbert $\Gamma_0({\mathscr A},p)\text{-modules}.$

Proof.

By a result of E. Lance, it suffices to show that there exists an isometric and surjective $\Gamma_0(\mathscr{A}, p)$ -linear map from \mathcal{E} to $\Gamma_0(\mathscr{E}, q)$.

Define a $\Gamma_0(\mathscr{A}, p)$ -linear map $S : \mathcal{E} \to \Gamma_0(\mathscr{E}, q)$ by $S(\zeta) := (\zeta + \mathcal{E}_x)_{x \in X}$. Then

$$\begin{split} \left\| (\zeta + \mathcal{E}_x)_{x \in X} \right\|_{\Gamma_0(\mathscr{E}, q)} &= \sup_{x \in X} \|\zeta + \mathcal{E}_x\|_{\mathscr{E}_x} \\ &= \sup_{x \in X} \|\langle \zeta, \zeta \rangle_{\mathcal{E}}(x) \|_{\mathscr{A}_x}^{1/2} \\ &= \|\langle \zeta, \zeta \rangle_{\mathcal{E}} \|_{\Gamma_0(\mathscr{A}, \rho)}^{1/2} \\ &= \|\zeta\|_{\mathcal{E}}. \quad \text{(Therefore, S is isometric.)} \end{split}$$

The surjectivity of S follows from the earlier comment that $\Delta = \Gamma_0(\mathscr{E}, q)$.

The class of (\mathscr{A}, p) -bundles of Hilbert C^* -modules over X forms a category.

Given two objects (\mathscr{E}, q) and (\mathscr{F}, r) of this class, a morphism from (\mathscr{E}, q) to (\mathscr{F}, r) is a (continuous) bundle map $\mathscr{T} : (\mathscr{E}, q) \to (\mathscr{F}, r)$ that satisfies the following conditions:

- $\mathscr{T}_x := \mathscr{T}|_{\mathscr{E}_x} : \mathscr{E}_x \to \mathscr{F}_x$ is an adjointable operator between Hilbert \mathscr{A}_x -modules.
- $\sup_{x\in X} \|\mathscr{T}_x\|_{\mathscr{E}_x\to\mathscr{F}_x} < \infty.$

If \mathcal{E} and \mathcal{F} are Hilbert $\Gamma_0(\mathscr{A}, p)$ -modules, and if $T : \mathcal{E} \to \mathcal{F}$ is an adjointable operator, then it is not difficult to show that the $\Gamma_0(\mathscr{A}, p)$ -linearity of T give us a morphism \mathscr{T} between the (\mathscr{A}, p) -bundles of Hilbert C^* -modules corresponding to \mathcal{E} and \mathcal{F} .

This observation leads us the following categorical result.

Proposition (H., 2017)

There is a natural isomorphism \mathfrak{F} from the category of Hilbert $\Gamma_0(\mathscr{A}, p)$ -modules (with morphisms given by the usual adjointable operators) to the category of (\mathscr{A}, p) -bundles of Hilbert C^{*}-modules over X (with morphisms as described above).

Definition (Groupoids)

A groupoid is a small category \mathcal{G} in which every morphism is an isomorphism. The set of objects of \mathcal{G} is called the unit space of \mathcal{G} and is denoted by $\mathcal{G}^{(0)}$. One also has maps $s, t: \mathcal{G} \to \mathcal{G}^{(0)}$ that take each morphism to its source and target respectively.

Definition (Groupoid Dynamical Systems)

A groupoid dynamical system is a quadruple $(\mathcal{G}, \alpha, \mathscr{A}, p)$ with the following properties:

- \mathcal{G} is a locally compact Hausdorff groupoid (this means that $\mathcal{G}^{(0)}$ is Hausdorff, the groupoid operations (including *s* and *t*) are continuous, and *s* and *t* are open).
- (\mathscr{A}, p) is a C^* -bundle over $\mathcal{G}^{(0)}$.
- α is a *G*-indexed family of *C*^{*}-algebraic isomorphisms governed by the following:

•
$$\alpha_{\gamma} : \mathscr{A}_{s(\gamma)} \to \mathscr{A}_{t(\gamma)}$$
 for each $\gamma \in \mathcal{G}$

•
$$\alpha_{\gamma_1} \circ \alpha_{\gamma_2} = \alpha_{\gamma_1 \gamma_2}$$
 for each $(\gamma_1, \gamma_2) \in \mathcal{G}^{(2)} := \mathcal{G}_s \times_t \mathcal{G}$.

• The map
$$\begin{cases} \mathcal{G}_{s} \times_{\rho} \mathscr{A} & \to & \mathscr{A} \\ (\gamma, \mathbf{a}) & \mapsto & \alpha_{\gamma}(\mathbf{a}) \end{cases}$$
 is continuous.

From now on, $(\mathcal{G}, \alpha, \mathscr{A}, p)$ denotes a groupoid dynamical system.

Definition (Hilbert C^* -Modules over a Groupoid Dynamical System (H., 2017))

A Hilbert $(\mathcal{G}, \alpha, \mathscr{A}, p)$ -module is a pair (\mathcal{E}, Φ) with the following properties:

- \mathcal{E} is a Hilbert $\Gamma_0(\mathscr{A}, p)$ -module (where we let $(\mathscr{E}, q) := \mathfrak{F}(\mathcal{E})$).
- $\bullet~\Phi$ is a groupoid homomorphism from ${\cal G}$ to

$$\mathsf{lso}(\mathscr{E}, oldsymbol{q}) \mathrel{\mathop:}= ig\{(t(\gamma), \mathcal{T}, oldsymbol{s}(\gamma)) \mid \gamma \in \mathcal{G} ext{ and } \mathcal{T} \in \mathsf{lsom}ig(\mathscr{E}_{oldsymbol{s}(\gamma)}, \mathscr{E}_{t(\gamma)}ig)ig\}$$

such that for each $\gamma \in \mathcal{G}$, there is a linear isometry $\Phi_{\gamma} \in \operatorname{Isom}(\mathscr{E}_{s(\gamma)}, \mathscr{E}_{t(\gamma)})$ giving

$$\Phi(\gamma) = (t(\gamma), \Phi_{\gamma}, s(\gamma)).$$

• The map $\begin{cases} \mathcal{G}_{s} \times_{q} \mathscr{E} & \to & \mathscr{E} \\ (\gamma, \zeta) & \mapsto & \Phi_{\gamma}(\zeta) \end{cases}$ is continuous.

•
$$\Phi(x) = (x, \mathsf{Id}_{\mathscr{E}_x}, x)$$
 for each $x \in \mathcal{G}^{(0)}$.

•
$$\Phi_{\gamma}(\zeta \bullet_{s(\gamma)} a) = \Phi_{\gamma}(\zeta) \bullet_{t(\gamma)} \alpha_{\gamma}(a)$$
 for each $\gamma \in \mathcal{G}$, $\zeta \in \mathscr{E}_{s(\gamma)}$ and $a \in \mathscr{A}_{s(\gamma)}$

•
$$\langle \Phi_{\gamma}(\zeta), \Phi_{\gamma}(\eta) \rangle_{\mathscr{E}_{\mathfrak{t}(\gamma)}} = \alpha_{\gamma} \Big(\langle \zeta, \eta \rangle_{\mathscr{E}_{\mathfrak{s}(\gamma)}} \Big)$$
 for each $\gamma \in \mathcal{G}$ and $\zeta, \eta \in \mathscr{E}_{\mathfrak{s}(\gamma)}$.

The class of Hilbert $(\mathcal{G}, \alpha, \mathscr{A}, p)$ -modules forms a category.

Given two objects (\mathcal{E}, Φ) and (\mathcal{F}, Ψ) of this class, a morphism from (\mathcal{E}, Φ) to (\mathcal{F}, Ψ) is an adjointable operator $\mathcal{T} : \mathcal{E} \to \mathcal{F}$ that satisfies the following equivariance property: If $\mathscr{T} := \mathfrak{F}(\mathcal{T})$, then $\mathscr{T}_{t(\gamma)} \circ \Phi_{\gamma} = \Psi_{\gamma} \circ \mathscr{T}_{s(\gamma)}$ for each $\gamma \in \mathcal{G}$.

The equivariance property means that if $(\mathscr{E}, q) := \mathfrak{F}(\mathcal{E})$ and $(\mathscr{F}, r) := \mathfrak{F}(\mathcal{F})$, then the following diagram commutes:

Example (An elementary example)

A simple non-trivial example of a Hilbert $(\mathcal{G}, \alpha, \mathscr{A}, p)$ -module is $(\Gamma_0(\mathscr{A}, p), \alpha)$, where we make use of the isomorphism $\Gamma_0(\mathscr{A}, p)/I_x \cong \mathscr{A}_x$ for all $x \in \mathcal{G}^{(0)}$.

We now suppose that the groupoid \mathcal{G} has a left Haar system $(\lambda^x)_{x \in \mathcal{G}^{(0)}}$ of measures.

Example (The standard Hilbert ($\mathcal{G}, \alpha, \mathscr{A}, p$)-module (H., 2017))

Let $(t^*\mathscr{A}, t^*p)$ denote the C^* -bundle over \mathcal{G} formed by pulling back the bundle (\mathscr{A}, p) over $\mathcal{G}^{(0)}$ under t. Complete $\Gamma_c(t^*\mathscr{A}, t^*p)$ to a Hilbert $\Gamma_0(\mathscr{A}, p)$ -module $\Gamma^2(t^*\mathscr{A}, t^*p)$. The corresponding (\mathscr{A}, p) -bundle of Hilbert C^* -modules has the property that its fiber over each $x \in \mathcal{G}^{(0)}$ is unitarily isomorphic to the Hilbert \mathscr{A}_x -module $L^2(\mathcal{G}^x, \mathscr{A}_x)$.

There is a groupoid homomorphism $\Theta: \mathcal{G} \to \mathsf{Iso}\bigl(\mathfrak{F}(\Gamma^2(t^*\mathscr{A},t^*p))\bigr)$ such that

$$\forall \phi \in C_c \Big(\mathcal{G}^{\mathfrak{s}(\gamma)}, \mathscr{A}_{\mathfrak{s}(\gamma)} \Big) : \quad \Theta_{\gamma} \big(\iota_{\mathfrak{s}(\gamma)}(\phi) \big) = \iota_{t(\gamma)} \left(\begin{cases} \mathcal{G}^{t(\gamma)} & \to & \mathscr{A}_{t(\gamma)} \\ \gamma' & \mapsto & \alpha_{\gamma} \Big(\phi \Big(\gamma^{-1} \gamma' \Big) \Big) \end{cases} \right),$$

where ι_x denotes the canonical dense linear embedding of $C_c(\mathcal{G}^x, \mathscr{A}_x)$ into $L^2(\mathcal{G}^x, \mathscr{A}_x)$. The pair $(\Gamma^2(t^*\mathscr{A}, t^*p), \Theta)$ is called the standard $(\mathcal{G}, \alpha, \mathscr{A}, p)$ -module. Definition (Bra-Ket Operators for Hilbert ($\mathcal{G}, \alpha, \mathscr{A}, p$)-Modules (H., 2017))

Let (\mathcal{E}, Φ) be a Hilbert $(\mathcal{G}, \alpha, \mathscr{A}, p)$ -module with $(\mathscr{E}, q) := \mathfrak{F}(\mathcal{E})$. For any $\zeta \in \mathcal{E}$, define two linear operators

 $\langle\!\langle \zeta | : \Gamma_0(\mathscr{E},q) \to \Gamma_b(t^*\mathscr{A},t^*p) \quad \text{and} \quad |\zeta
angle : \Gamma_c(t^*\mathscr{A},t^*p) \to \Gamma_0(\mathscr{E},q),$

called the bra and ket of ζ respectively, by

$$orall \sigma \in \Gamma_0(\mathscr{E}, q): \qquad \langle\!\langle \zeta | (\sigma) := egin{cases} \mathcal{G} & o & t^*\mathscr{A} \ \gamma & \mapsto & \langle \Phi_\gamma(\zeta + \mathcal{E}_{\mathfrak{s}(\zeta)}), \sigma(t(\gamma))
angle_{\mathscr{E}_{t(\gamma)}} \end{pmatrix}; \ \mathcal{J} \phi \in \Gamma_c(t^*\mathscr{A}, t^*p): \qquad |\zeta
angle(\phi) := egin{cases} X & o & \mathscr{E} \ x & \mapsto & \int_{\mathcal{G}} \Phi_\gamma(\zeta + \mathcal{E}_x) ullet_x \phi(\gamma) \, \mathrm{d}\lambda^x(\gamma) \end{pmatrix}.$$

Given any $\zeta, \eta \in \mathcal{E}$, we have $\langle\!\langle \zeta | \eta \rangle\!\rangle [\Gamma_c(t^* \mathscr{A}, t^* p)] \subseteq \Gamma_b(t^* \mathscr{A}, t^* p)$.

Definition (Square-Integrable Vectors (H., 2017))

Let (\mathcal{E}, Φ) be a Hilbert $(\mathcal{G}, \alpha, \mathscr{A}, p)$ -module with $(\mathscr{E}, q) := \mathfrak{F}(\mathcal{E})$. We then call $\zeta \in \mathcal{E}$ a square-integrable vector if and only if for any section $\sigma \in \Gamma_0(\mathscr{E}, q)$ and any net $(\varphi_i)_{i \in I}$ of functions in $C_c(\mathcal{G}, [0, 1])$ that converges uniformly to 1 on all compact subsets of \mathcal{G} , the corresponding net $(\iota(\varphi_i \cdot \langle \langle \zeta | (\sigma) \rangle)_{i \in I})_{i \in I}$ in $\Gamma^2(t^*A, t^*p)$ is also convergent. The set of square-integrable vectors is denoted by $(\mathcal{E}, \Phi)_{si}$.

We call (\mathcal{E}, Φ) a square-integrable representation of $(\mathcal{G}, \alpha, \mathscr{A}, p)$ if and only if $(\mathcal{E}, \Phi)_{si}$ is dense in \mathcal{E} .

Using the concept of square-integrability, one can, in principle, achieve the following:

- A generalization of J. Brown's results on proper groupoid actions on C^* -algebras.
- The construction of generalized fixed-point algebras for proper groupoid actions on Hilbert *C*^{*}-modules.
- A classification of reduced groupoid crossed products.
- An equivariant version of Kasparov's Stabilization Theorem for groupoids.
- A definition of equivariant KK-theory for groupoid actions.

One only has to mimic the proofs given in [Meyer, 2001, Meyer, 2001] and [H, 2016].

References

J. Brown (2012)

Proper Actions of Groupoids on C^* -Algebras

J. Operator Theory, 67(2), 437-467.

J.M.G. Fell & R.S. Doran (1988)

Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles. Vol. 1 Pure Appl. Math., Vol. 125, Academic Press Inc., Boston, MA (1988).

L. Huang (2016)

Generalized Fixed-Point Algebras for Twisted C^* -Dynamical Systems Submitted for publication.

R. Meyer (2000)

Equivariant Kasparov Theory and Generalized Homomorphisms K-Theory, 21, 201–228.

R. Meyer (2001)

Generalized Fixed Point Algebras and Square-Integrable Group Actions

J. Funct. Anal., 186(1), 167-195.

D. Williams (2007)

Crossed Products of C^* -Algebras

Math. Surveys Monogr., Vol. 134, American Mathematical Society, Providence, RI (2007).