Twists over étale groupoids and twisted vector bundles

Carla Farsi and Elizabeth Gillaspy

University of Colorado - Boulder and WWU - Münster

Groupoidfest, University of Colorado - Boulder 25 March 2017

Motivation

For a groupoid \mathcal{G} with $\mathcal{G}^{(0)} = M$ and a twist \mathcal{R} over \mathcal{G} ,

 $K_0(C_r^*(\mathcal{G};\mathcal{R}))$

classifies *D*-brane charges in Type IIB string theories over M [Wit98, BM00]

Motivation

For a groupoid \mathcal{G} with $\mathcal{G}^{(0)} = M$ and a twist \mathcal{R} over \mathcal{G} ,

 $K_0(C_r^*(\mathcal{G};\mathcal{R}))$

classifies *D*-brane charges in Type IIB string theories over *M* [Wit98, BM00] The twist \mathcal{R} represents the field strength of the *B*-field.

Motivation

For a groupoid \mathcal{G} with $\mathcal{G}^{(0)} = M$ and a twist \mathcal{R} over \mathcal{G} ,

 $K_0(C_r^*(\mathcal{G};\mathcal{R}))$

classifies *D*-brane charges in Type IIB string theories over *M* [Wit98, BM00] The twist \mathcal{R} represents the field strength of the *B*-field.

In general [TXLG04] these K-theory classes are given by G-invariant Fredholm operators on an infinite-dimensional bundle over M.

Motivation

For a groupoid \mathcal{G} with $\mathcal{G}^{(0)} = M$ and a twist \mathcal{R} over \mathcal{G} ,

 $K_0(C^*_r(\mathcal{G};\mathcal{R}))$

classifies *D*-brane charges in Type IIB string theories over *M* [Wit98, BM00] The twist \mathcal{R} represents the field strength of the *B*-field.

In general [TXLG04] these *K*-theory classes are given by \mathcal{G} -invariant Fredholm operators on an infinite-dimensional bundle over *M*. (The bundle is determined by the twist \mathcal{R} .)

Motivation

For a groupoid \mathcal{G} with $\mathcal{G}^{(0)} = M$ and a twist \mathcal{R} over \mathcal{G} ,

 $K_0(C_r^*(\mathcal{G};\mathcal{R}))$

classifies *D*-brane charges in Type IIB string theories over *M* [Wit98, BM00] The twist \mathcal{R} represents the field strength of the *B*-field.

In general [TXLG04] these *K*-theory classes are given by \mathcal{G} -invariant Fredholm operators on an infinite-dimensional bundle over *M*. (The bundle is determined by the twist \mathcal{R} .)

Question:

When can $K_0(C_r^*(\mathcal{G}; \mathcal{R}))$ be understood in terms of vector bundles?

Motivation

Question:

When can $K_0(C_r^*(\mathcal{G}; \mathcal{R}))$ be understood in terms of vector bundles?

Motivation

Question:

When can $K_0(C_r^*(\mathcal{G}; \mathcal{R}))$ be understood in terms of vector bundles?

Motivation

Question:

When can $K_0(C_r^*(\mathcal{G}; \mathcal{R}))$ be understood in terms of vector bundles?

Necessary conditions:

• The twist \mathcal{R} must represent a torsion element of $H^2(\mathcal{G}, \mathcal{S})$.

Motivation

Question:

When can $K_0(C_r^*(\mathcal{G}; \mathcal{R}))$ be understood in terms of vector bundles?

- The twist \mathcal{R} must represent a torsion element of $H^2(\mathcal{G}, \mathcal{S})$.
- Other more-or-less technical conditions (Theorem 5.28 of [TXLG04])

Motivation

Question:

When can $K_0(C_r^*(\mathcal{G}; \mathcal{R}))$ be understood in terms of vector bundles?

- The twist \mathcal{R} must represent a torsion element of $H^2(\mathcal{G}, \mathcal{S})$.
- Other more-or-less technical conditions (Theorem 5.28 of [TXLG04])
- There must exist vector bundles over $\mathcal{G}^{(0)}$ which are compatible with the twist \mathcal{R} .

Motivation

Question:

When can $K_0(C_r^*(\mathcal{G}; \mathcal{R}))$ be understood in terms of vector bundles?

- The twist \mathcal{R} must represent a torsion element of $H^2(\mathcal{G}, \mathcal{S})$.
- Other more-or-less technical conditions (Theorem 5.28 of [TXLG04])
- There must exist vector bundles over $\mathcal{G}^{(0)}$ which are compatible with the twist \mathcal{R} . Twisted vector bundles

Motivation

Question:

When can $K_0(C_r^*(\mathcal{G}; \mathcal{R}))$ be understood in terms of vector bundles?

Necessary conditions:

- The twist \mathcal{R} must represent a torsion element of $H^2(\mathcal{G}, \mathcal{S})$.
- Other more-or-less technical conditions (Theorem 5.28 of [TXLG04])
- There must exist vector bundles over $\mathcal{G}^{(0)}$ which are compatible with the twist \mathcal{R} . Twisted vector bundles

[TXLG04] conjectured that their existence is implied by $[\mathcal{R}]$ torsion.

When do twisted vector bundles exist?

Theorem (Farsi-G, [FG16])

Let \mathcal{G} be an étale groupoid and let \mathcal{R} be a twist over \mathcal{G} , of order n in $H^2(\mathcal{G}, \mathcal{S})$. Suppose that the classifying space $\mathcal{B}\mathcal{G}$ is a compact \mathcal{CW} complex, and that the principal $\mathcal{PU}(n)$ -bundle over $\mathcal{G}^{(0)}$ induced by \mathcal{R} lifts to a U(n) principal bundle. Then \mathcal{R} admits a twisted vector bundle.

Outline

Definitions

Carla Farsi and Elizabeth Gillaspy Twists over étale groupoids and twisted vector bundles

Outline

- Definitions
- Example

Outline

- Definitions
- Example
- Proof of main Theorem

Étale Groupoids

We want groupoids \mathcal{G} to have a locally compact Hausdorff topology with respect to which multiplication and inversion are continuous.

Étale Groupoids

We want groupoids \mathcal{G} to have a locally compact Hausdorff topology with respect to which multiplication and inversion are continuous.

The unit space $\mathcal{G}^{(0)}$ is then always closed in \mathcal{G} ; we say \mathcal{G} is <u>étale</u> if $\mathcal{G}^{(0)} \subseteq \mathcal{G}$ is open and r, s are local homeomorphisms.

Étale Groupoids

We want groupoids ${\cal G}$ to have a locally compact Hausdorff topology with respect to which multiplication and inversion are continuous.

The unit space $\mathcal{G}^{(0)}$ is then always closed in \mathcal{G} ; we say \mathcal{G} is <u>étale</u> if $\mathcal{G}^{(0)} \subseteq \mathcal{G}$ is open and r, s are local homeomorphisms.

Examples:

• If G is a discrete group, G is étale.

Étale Groupoids

We want groupoids ${\cal G}$ to have a locally compact Hausdorff topology with respect to which multiplication and inversion are continuous.

The unit space $\mathcal{G}^{(0)}$ is then always closed in \mathcal{G} ; we say \mathcal{G} is <u>étale</u> if $\mathcal{G}^{(0)} \subseteq \mathcal{G}$ is open and r, s are local homeomorphisms.

Examples:

- If G is a discrete group, G is étale.
- If G is a discrete group, $X \rtimes G$ is étale.

Étale Groupoids

We want groupoids ${\cal G}$ to have a locally compact Hausdorff topology with respect to which multiplication and inversion are continuous.

The unit space $\mathcal{G}^{(0)}$ is then always closed in \mathcal{G} ; we say \mathcal{G} is <u>étale</u> if $\mathcal{G}^{(0)} \subseteq \mathcal{G}$ is open and r, s are local homeomorphisms.

Examples:

- If G is a discrete group, G is étale.
- If G is a discrete group, $X \rtimes G$ is étale.
- A vector bundle is NOT étale.

Twists over groupoids

Let G be a group. A principal G-bundle over a space X is a locally trivial G-space E with $E/G \cong X$.

Twists over groupoids

Let G be a group. A principal G-bundle over a space X is a locally trivial G-space E with $E/G \cong X$.

A <u>twist</u> over a (topological) groupoid \mathcal{G} is a principal \mathbb{T} -bundle $p: \mathcal{R} \to \mathcal{G}$, such that \mathcal{R} is also a groupoid in a compatible way:

$$r(\gamma) = r(p(\gamma)), \quad s(\gamma) = s(p(\gamma)), \quad p(\gamma\eta) = p(\gamma)p(\eta) \ \forall \ (\gamma,\eta) \in \mathcal{R}^{(2)}$$

Twists over groupoids

Let G be a group. A principal G-bundle over a space X is a locally trivial G-space E with $E/G \cong X$.

A <u>twist</u> over a (topological) groupoid \mathcal{G} is a principal \mathbb{T} -bundle $p: \mathcal{R} \to \mathcal{G}$, such that \mathcal{R} is also a groupoid in a compatible way:

$$r(\gamma) = r(p(\gamma)), \quad s(\gamma) = s(p(\gamma)), \quad p(\gamma\eta) = p(\gamma)p(\eta) \ \forall \ (\gamma,\eta) \in \mathcal{R}^{(2)}$$

Example

If $c: \mathcal{G}^{(2)} \to \mathbb{T}$ is a continuous 2-cocycle, then $\mathcal{G} \times \mathbb{T}$ is a twist over \mathcal{G} :

$$(g,z)(h,w) := (gh, c(g,h)zw).$$

Twists over groupoids

Let S denote the trivial sheaf with fibers \mathbb{T} . Twists give rise to elements of $H^2(\mathcal{G}, \mathcal{S})$;

Twists over groupoids

Let S denote the trivial sheaf with fibers \mathbb{T} . Twists give rise to elements of $H^2(\mathcal{G}, \mathcal{S})$; [Kum88] constructs a long exact sequence

 $\cdots H^{1}(\mathcal{G},\mathcal{S}) \to H^{1}(\mathcal{G}^{(0)},\mathcal{S}) \to Tw(\mathcal{G}) \to H^{2}(\mathcal{G},\mathcal{S}) \to H^{2}(\mathcal{G}^{(0)},\mathcal{S}) \cdots$

Twists over groupoids

Let S denote the trivial sheaf with fibers \mathbb{T} . Twists give rise to elements of $H^2(\mathcal{G}, \mathcal{S})$; [Kum88] constructs a long exact sequence

$$\cdots H^{1}(\mathcal{G},\mathcal{S}) \to H^{1}(\mathcal{G}^{(0)},\mathcal{S}) \to Tw(\mathcal{G}) \to H^{2}(\mathcal{G},\mathcal{S}) \to H^{2}(\mathcal{G}^{(0)},\mathcal{S}) \cdots$$

If ${\mathcal G}$ is nice (proper; or, ${\mathcal G}^{(0)}$ zero-dimensional) then

 $H^2(\mathcal{G},\mathcal{S})\cong H^3(\mathcal{G},\mathbb{Z}).$

Twists over groupoids

Let S denote the trivial sheaf with fibers \mathbb{T} . Twists give rise to elements of $H^2(\mathcal{G}, \mathcal{S})$; [Kum88] constructs a long exact sequence

$$\cdots H^{1}(\mathcal{G},\mathcal{S}) \to H^{1}(\mathcal{G}^{(0)},\mathcal{S}) \to Tw(\mathcal{G}) \to H^{2}(\mathcal{G},\mathcal{S}) \to H^{2}(\mathcal{G}^{(0)},\mathcal{S}) \cdots$$

If ${\mathcal G}$ is nice (proper; or, ${\mathcal G}^{(0)}$ zero-dimensional) then

 $H^2(\mathcal{G},\mathcal{S})\cong H^3(\mathcal{G},\mathbb{Z}).$

Product of twists is given by Baer sum:

$$\mathcal{R}_1 st \mathcal{R}_2 = (\mathcal{R}_1 imes_\mathcal{G} \mathcal{R}_2)/\sim, \quad (\gamma_1, z\gamma_2) \sim (z\gamma_1, \gamma_2) \ orall \ z \in \mathbb{T}, \gamma_i \in \mathcal{R}_i$$

Twists over groupoids

Let S denote the trivial sheaf with fibers \mathbb{T} . Twists give rise to elements of $H^2(\mathcal{G}, \mathcal{S})$; [Kum88] constructs a long exact sequence

$$\cdots H^{1}(\mathcal{G},\mathcal{S}) \to H^{1}(\mathcal{G}^{(0)},\mathcal{S}) \to Tw(\mathcal{G}) \to H^{2}(\mathcal{G},\mathcal{S}) \to H^{2}(\mathcal{G}^{(0)},\mathcal{S}) \cdots$$

If ${\mathcal G}$ is nice (proper; or, ${\mathcal G}^{(0)}$ zero-dimensional) then

 $H^2(\mathcal{G},\mathcal{S})\cong H^3(\mathcal{G},\mathbb{Z}).$

Product of twists is given by Baer sum:

$$\mathcal{R}_1 * \mathcal{R}_2 = (\mathcal{R}_1 imes_\mathcal{G} \mathcal{R}_2) / \sim, \quad (\gamma_1, z \gamma_2) \sim (z \gamma_1, \gamma_2) \ \forall \ z \in \mathbb{T}, \gamma_i \in \mathcal{R}_i$$

Alternatively, equivalence classes of twists correspond to S^1 -gerbes over the stack $\mathfrak{X}_{\mathcal{G}}.$

Twists over groupoids and their C^* -algebras

Given a groupoid ${\mathcal G}$ with:

• a locally compact Hausdorff topology,

Twists over groupoids and their C^* -algebras

Given a groupoid ${\mathcal G}$ with:

- a locally compact Hausdorff topology,
- a Haar system $\{\lambda^u\}_{u\in\mathcal{G}^{(0)}}$,

Twists over groupoids and their C^* -algebras

Given a groupoid \mathcal{G} with:

- a locally compact Hausdorff topology,
- a Haar system $\{\lambda^u\}_{u\in\mathcal{G}^{(0)}}$,

we can make $C_c(\mathcal{G})$ into a *-algebra:

Twists over groupoids and their C^* -algebras

Given a groupoid ${\mathcal G}$ with:

- a locally compact Hausdorff topology,
- a Haar system $\{\lambda^u\}_{u\in\mathcal{G}^{(0)}}$,

we can make $C_c(\mathcal{G})$ into a *-algebra:

$$f * g(x) := \int f(xy)g(y^{-1}) d\lambda^{s(x)}(y)$$
$$f^*(x) := \overline{f(x^{-1})}.$$

Twists over groupoids and their C^* -algebras

Given a groupoid ${\mathcal G}$ with:

- a locally compact Hausdorff topology,
- a Haar system $\{\lambda^u\}_{u\in\mathcal{G}^{(0)}}$,

we can make $C_c(\mathcal{G})$ into a *-algebra:

$$f * g(x) := \int f(xy)g(y^{-1}) d\lambda^{s(x)}(y)$$
$$f^*(x) := \overline{f(x^{-1})}.$$

If \mathcal{G} is étale, each fiber \mathcal{G}^u is discrete, so we take λ^u to be counting measure.

Reduced groupoid C*-algebras

To make $C_c(\mathcal{G})$ into $C_r^*(\mathcal{G})$, we represent it on $L^2(\mathcal{G}, \nu^{-1})$ by left convolution multiplication.
Reduced groupoid C*-algebras

To make $C_c(\mathcal{G})$ into $C_r^*(\mathcal{G})$, we represent it on $L^2(\mathcal{G}, \nu^{-1})$ by left convolution multiplication.

$$\nu^{-1}(f) = \int_{\mathcal{G}^{(0)}} \int_{\mathcal{G}} f(\gamma^{-1}) d\lambda^{u}(\gamma) d\mu(u)$$

for any quasi-invariant Radon measure μ on $\mathcal{G}^{(0)}$.

Reduced groupoid C*-algebras

To make $C_c(\mathcal{G})$ into $C_r^*(\mathcal{G})$, we represent it on $L^2(\mathcal{G}, \nu^{-1})$ by left convolution multiplication.

$$u^{-1}(f) = \int_{\mathcal{G}^{(0)}} \int_{\mathcal{G}} f(\gamma^{-1}) d\lambda^{u}(\gamma) d\mu(u)$$

for any quasi-invariant Radon measure μ on $\mathcal{G}^{(0)}$.

The representation $\pi: C_c(\mathcal{G}) \to B(L^2(\mathcal{G}, \nu^{-1}))$ is given by

$$\pi(f)\xi(x)=f*\xi(x)=\int f(xy)\xi(y^{-1})\,d\lambda^{s(x)}(y).$$

Reduced groupoid C*-algebras

To make $C_c(\mathcal{G})$ into $C_r^*(\mathcal{G})$, we represent it on $L^2(\mathcal{G}, \nu^{-1})$ by left convolution multiplication.

$$u^{-1}(f) = \int_{\mathcal{G}^{(0)}} \int_{\mathcal{G}} f(\gamma^{-1}) d\lambda^{u}(\gamma) d\mu(u)$$

for any quasi-invariant Radon measure μ on $\mathcal{G}^{(0)}$.

The representation $\pi: C_c(\mathcal{G}) \to B(L^2(\mathcal{G}, \nu^{-1}))$ is given by

$$\pi(f)\xi(x)=f*\xi(x)=\int f(xy)\xi(y^{-1})\,d\lambda^{s(x)}(y).$$

$$C_r^*(\mathcal{G}) = \overline{C_c(\mathcal{G})} \subseteq B(L^2(\mathcal{G}, \nu^{-1})).$$

Twisted groupoid C^* -algebras

Given a twist $p: \mathcal{R} \to \mathcal{G}$,

 $C_c(\mathcal{G};\mathcal{R}) := \{f: \mathcal{R} \to \mathbb{C} \text{ such that } f(z \cdot r) = \overline{z} \cdot f(r)\}.$

Twisted groupoid C^* -algebras

Given a twist $p:\mathcal{R}
ightarrow\mathcal{G}$,

 $C_c(\mathcal{G};\mathcal{R}) := \{f : \mathcal{R} \to \mathbb{C} \text{ such that } f(z \cdot r) = \overline{z} \cdot f(r)\}.$

This is a convolution algebra:

$$f * g(r) := \int_{\mathcal{G}} f(rs)g(s^{-1}) d\lambda^{s(r)}(p(s)), \quad f^*(r) := \overline{f(r^{-1})}$$

Twisted groupoid C^* -algebras

Given a twist $p:\mathcal{R}
ightarrow\mathcal{G}$,

$$C_c(\mathcal{G};\mathcal{R}) := \{f: \mathcal{R} \to \mathbb{C} \text{ such that } f(z \cdot r) = \overline{z} \cdot f(r)\}.$$

This is a convolution algebra:

$$f * g(r) := \int_{\mathcal{G}} f(rs)g(s^{-1}) d\lambda^{s(r)}(p(s)), \quad f^*(r) := \overline{f(r^{-1})}$$

The reduced twisted C^* -algebra $C^*_r(\mathcal{G}; \mathcal{R})$ arises from representing $C_c(\mathcal{G}; \mathcal{R})$ on $L^2(\mathcal{G}, \nu^{-1})$.

Twisted groupoid C^* -algebras

Given a twist $p:\mathcal{R}
ightarrow\mathcal{G}$,

$$C_c(\mathcal{G};\mathcal{R}) := \{f: \mathcal{R} \to \mathbb{C} \text{ such that } f(z \cdot r) = \overline{z} \cdot f(r)\}.$$

This is a convolution algebra:

$$f * g(r) := \int_{\mathcal{G}} f(rs)g(s^{-1}) d\lambda^{s(r)}(p(s)), \quad f^*(r) := \overline{f(r^{-1})}$$

The reduced twisted C^* -algebra $C^*_r(\mathcal{G}; \mathcal{R})$ arises from representing $C_c(\mathcal{G}; \mathcal{R})$ on $L^2(\mathcal{G}, \nu^{-1})$. If \mathcal{R} arises from a 2-cocycle c, then $C^*_r(\mathcal{G}; \mathcal{R}) \cong \overline{C_c(\mathcal{G}, c)}$:

$$f *_{c} g(\gamma) = \int_{\mathcal{G}} f(\gamma \eta) g(\eta^{-1}) c(\gamma \eta, \eta^{-1}) d\lambda^{s(\gamma)}(\eta).$$

Twisted vector bundles

Let \mathcal{R} be a twist over \mathcal{G} (principal \mathbb{T} -bundle over \mathcal{G}). A twisted vector bundle is a vector bundle

$$\pi: E o \left(\mathcal{G}^{(0)} = \mathcal{R}^{(0)}
ight)$$

which admits an action of \mathcal{R} such that, for all $z \in \mathbb{T}, \ \gamma \in \mathcal{R}, \ e \in E$ with $\pi(e) = s(\gamma)$, $(z \cdot \gamma) \cdot e = z(\gamma \cdot e)$.

Twisted vector bundles

Let \mathcal{R} be a twist over \mathcal{G} (principal \mathbb{T} -bundle over \mathcal{G}). A twisted vector bundle is a vector bundle

$$\pi: E o \left(\mathcal{G}^{(0)} = \mathcal{R}^{(0)}
ight)$$

which admits an action of \mathcal{R} such that, for all $z \in \mathbb{T}, \ \gamma \in \mathcal{R}, \ e \in E$ with $\pi(e) = s(\gamma)$, $(z \cdot \gamma) \cdot e = z(\gamma \cdot e).$

Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank n, then \mathcal{R} represents a class of order n in $H^2(\mathcal{G}, \mathcal{S})$.

Proof:

Classifying space

One way to realize the standard k-simplex Δ_k :

$$\Delta_k = \{(t_1,\ldots,t_k): 0 \leq t_1 \leq \cdots \leq t_k \leq 1\}$$

Classifying space

One way to realize the standard k-simplex Δ_k :

$$\Delta_k = \{(t_1,\ldots,t_k): 0 \leq t_1 \leq \cdots \leq t_k \leq 1\}$$

$$B\mathcal{G} = \left(\bigsqcup_{k \in \mathbb{N}} \mathcal{G}^{(k)} imes \Delta_k
ight) / \sim, \quad ext{where}$$

$$((g_1,\ldots,g_k),(t_1,\ldots,t_i,t_i,t_{i+1},\ldots,t_{k-1})) \ \sim ((g_1,\ldots,g_ig_{i+1},\ldots,g_k),(t_1,\ldots,t_i,t_{i+1},\ldots,t_{k-1})).$$

Classifying space

One way to realize the standard k-simplex Δ_k :

$$\Delta_k = \{(t_1,\ldots,t_k) : 0 \le t_1 \le \cdots \le t_k \le 1\}$$

$$B\mathcal{G} = \left(\bigsqcup_{k \in \mathbb{N}} \mathcal{G}^{(k)} imes \Delta_k
ight) / \sim, \quad ext{where}$$

$$((g_1,\ldots,g_k),(t_1,\ldots,t_i,t_i,t_{i+1},\ldots,t_{k-1})) \\ \sim ((g_1,\ldots,g_ig_{i+1},\ldots,g_k),(t_1,\ldots,t_i,t_{i+1},\ldots,t_{k-1})).$$

Think of groupoid *k*-tuples as labeling *k*-simplices:

Classifying space

One way to realize the standard k-simplex Δ_k :

$$\Delta_k = \{(t_1,\ldots,t_k) : 0 \le t_1 \le \cdots \le t_k \le 1\}$$

$$B\mathcal{G} = \left(\bigsqcup_{k \in \mathbb{N}} \mathcal{G}^{(k)} imes \Delta_k
ight) / \sim, \quad ext{where}$$

$$((g_1,\ldots,g_k),(t_1,\ldots,t_i,t_i,t_{i+1},\ldots,t_{k-1})) \\ \sim ((g_1,\ldots,g_ig_{i+1},\ldots,g_k),(t_1,\ldots,t_i,t_{i+1},\ldots,t_{k-1})).$$

Think of groupoid k-tuples as labeling k-simplices: the various possible partial products label the faces.

Classifying space

Note:

• For all k, the map $\phi_k: \mathcal{G}^{(k)} \to \mathcal{BG}$ given by

$$\phi_k(g_1,\ldots,g_k)=[(g_1,\ldots,g_k),(0,\ldots,0)]$$

is continuous, and intertwines with the face/degeneracy maps.

Classifying space

Note:

• For all k, the map $\phi_k : \mathcal{G}^{(k)} \to \mathcal{BG}$ given by

$$\phi_k(g_1,\ldots,g_k) = [(g_1,\ldots,g_k),(0,\ldots,0)]$$

is continuous, and intertwines with the face/degeneracy maps.

• [Wil08] If $\mathcal{G} = M \rtimes G$, then $B\mathcal{G} \cong M \times_G \mathcal{E}G$, where $\mathcal{E}G$ is any contractible space with a free action of G.

Classifying space

Note:

• For all k, the map $\phi_k : \mathcal{G}^{(k)} \to \mathcal{BG}$ given by

$$\phi_k(g_1,\ldots,g_k) = [(g_1,\ldots,g_k),(0,\ldots,0)]$$

is continuous, and intertwines with the face/degeneracy maps.

 [Wil08] If G = M ⋊ G, then BG ≅ M ×_G EG, where EG is any contractible space with a free action of G.
 Proof: k-tuples in G are ((g₁,...,g_k), m).

Classifying space

Note:

• For all k, the map $\phi_k : \mathcal{G}^{(k)} \to \mathcal{BG}$ given by

$$\phi_k(g_1,\ldots,g_k)=[(g_1,\ldots,g_k),(0,\ldots,0)]$$

is continuous, and intertwines with the face/degeneracy maps.

 [Wil08] If G = M ⋊ G, then BG ≅ M ×_G EG, where EG is any contractible space with a free action of G.
 Proof: k-tuples in G are ((g₁,...,g_k), m).

$$[((g_1,\ldots,g_k),m),(t_1,\ldots,t_k)]\mapsto [(m,(g_1,\ldots,g_k),(t_1,\ldots,t_k))].$$

When do twisted vector bundles exist?

Theorem (Farsi-G, [FG16])

Let \mathcal{G} be an étale groupoid and let \mathcal{R} be a twist over \mathcal{G} , of order n in $H^2(\mathcal{G}, \mathcal{S})$. Suppose that the classifying space $\mathcal{B}\mathcal{G}$ is a compact CW complex, and that the principal $\mathcal{P}U(n)$ -bundle over $\mathcal{G}^{(0)}$ induced by \mathcal{R} lifts to a U(n) principal bundle. Then \mathcal{R} admits a twisted vector bundle.

When do twisted vector bundles exist?

Theorem (Farsi-G, [FG16])

Let \mathcal{G} be an étale groupoid and let \mathcal{R} be a twist over \mathcal{G} , of order n in $H^2(\mathcal{G}, \mathcal{S})$. Suppose that the classifying space $\mathcal{B}\mathcal{G}$ is a compact CW complex, and that the principal $\mathcal{P}U(n)$ -bundle over $\mathcal{G}^{(0)}$ induced by \mathcal{R} lifts to a U(n) principal bundle. Then \mathcal{R} admits a twisted vector bundle.

When do these hypotheses hold?

An example

$\mathbb{R} \mathsf{P}^2 = \{(\rho,\theta): 0 \leq \rho \leq 1, 0 \leq \theta < 2\pi\}/\sim \ \text{where} \ (1,\theta) \sim (1,\theta+\pi).$

An example

 $\mathbb{R}P^{2} = \{(\rho, \theta) : 0 \le \rho \le 1, 0 \le \theta < 2\pi\}/\sim \text{ where } (1, \theta) \sim (1, \theta + \pi).$ Fix $x \in \mathbb{R} \setminus \mathbb{Q}$. Set $\mathcal{G} := M \rtimes_{\alpha} \mathbb{Z}$, where

$$M = \mathbb{R}P^2 \times S^4; \quad \alpha([\rho, \theta], z) = ([\rho, \theta + \rho x], z).$$

An example

$$\begin{split} \mathbb{R}P^2 &= \{(\rho,\theta): 0 \le \rho \le 1, 0 \le \theta < 2\pi\} / \sim \text{ where } (1,\theta) \sim (1,\theta+\pi). \\ \text{Fix } x \in \mathbb{R} \setminus \mathbb{Q}. \text{ Set } \mathcal{G} &:= M \rtimes_{\alpha} \mathbb{Z}, \text{ where} \\ M &= \mathbb{R}P^2 \times S^4; \quad \alpha([\rho,\theta],z) = ([\rho,\theta+\rho x],z). \end{split}$$
Since *M* is compact, $B\mathcal{G} \cong M \times_{\mathbb{Z}} \mathbb{R}$ is too.

An example

$$\mathbb{R}P^2 = \{(\rho, \theta) : 0 \le \rho \le 1, 0 \le \theta < 2\pi\}/\sim \text{ where } (1, \theta) \sim (1, \theta + \pi).$$

Fix $x \in \mathbb{R} \setminus \mathbb{Q}$. Set $\mathcal{G} := M \rtimes_{\alpha} \mathbb{Z}$, where

$$M = \mathbb{R}P^2 \times S^4$$
; $\alpha([\rho, \theta], z) = ([\rho, \theta + \rho x], z).$

Since M is compact, $B\mathcal{G} \cong M \times_{\mathbb{Z}} \mathbb{R}$ is too.

Künneth Theorem calculations tell us $\mathbb{Z}/2\mathbb{Z} \subseteq Tw(\mathcal{G}) \cong H^2(M,\mathbb{Z});$

An example

$$\mathbb{R}\mathsf{P}^2 = \{(\rho,\theta): 0 \le \rho \le 1, 0 \le \theta < 2\pi\}/\sim \text{ where } (1,\theta) \sim (1,\theta+\pi).$$

Fix $x \in \mathbb{R} \setminus \mathbb{Q}$. Set $\mathcal{G} := M \rtimes_{\alpha} \mathbb{Z}$, where

$$M = \mathbb{R}P^2 \times S^4$$
; $\alpha([\rho, \theta], z) = ([\rho, \theta + \rho x], z).$

Since *M* is compact, $B\mathcal{G} \cong M \times_{\mathbb{Z}} \mathbb{R}$ is too.

Künneth Theorem calculations tell us $\mathbb{Z}/2\mathbb{Z} \subseteq Tw(\mathcal{G}) \cong H^2(M,\mathbb{Z})$; moreover, for any *n*, the obstruction to lifting a PU(n)-bundle over *M* to a U(n)-bundle lives in

$$H^2(M,\mathbb{T})\cong H^3(M,\mathbb{Z})\cong H^3(\mathbb{R}P^2,\mathbb{Z})\otimes H^0(S^4,\mathbb{Z})=0.$$

Proof sketch

• [Moe98] For any étale groupoid \mathcal{G} and any abelian \mathcal{G} -sheaf \mathcal{A} , $H^2(\mathcal{G}, \mathcal{A}) \cong H^2(B\mathcal{G}, \mathcal{A});$

Proof sketch

• [Moe98] For any étale groupoid \mathcal{G} and any abelian \mathcal{G} -sheaf \mathcal{A} , $H^2(\mathcal{G}, \mathcal{A}) \cong H^2(B\mathcal{G}, \mathcal{A})$; we want $\mathcal{A} = \mathcal{S}$ (sheaf of continuous \mathbb{T} -valued functions on $\mathcal{G}^{(0)}$)

- [Moe98] For any étale groupoid \mathcal{G} and any abelian \mathcal{G} -sheaf \mathcal{A} , $H^2(\mathcal{G}, \mathcal{A}) \cong H^2(B\mathcal{G}, \mathcal{A})$; we want $\mathcal{A} = \mathcal{S}$ (sheaf of continuous \mathbb{T} -valued functions on $\mathcal{G}^{(0)}$)
- The Serre-Grothendieck Theorem says that, since [R] has order n in H²(G, S), [R] gives a principal PU(n)-bundle P over BG.

- [Moe98] For any étale groupoid \mathcal{G} and any abelian \mathcal{G} -sheaf \mathcal{A} , $H^2(\mathcal{G}, \mathcal{A}) \cong H^2(B\mathcal{G}, \mathcal{A})$; we want $\mathcal{A} = \mathcal{S}$ (sheaf of continuous \mathbb{T} -valued functions on $\mathcal{G}^{(0)}$)
- The Serre-Grothendieck Theorem says that, since [R] has order n in H²(G, S), [R] gives a principal PU(n)-bundle P over BG.
- Pull \tilde{P} back along the inclusion $\mathcal{G}^{(0)} \subseteq B\mathcal{G}$ to get a principal PU(n)-bundle P over $\mathcal{G}^{(0)}$, which comes with a \mathcal{G} -action.

- [Moe98] For any étale groupoid \mathcal{G} and any abelian \mathcal{G} -sheaf \mathcal{A} , $H^2(\mathcal{G}, \mathcal{A}) \cong H^2(B\mathcal{G}, \mathcal{A})$; we want $\mathcal{A} = \mathcal{S}$ (sheaf of continuous \mathbb{T} -valued functions on $\mathcal{G}^{(0)}$)
- The Serre-Grothendieck Theorem says that, since [R] has order n in H²(G, S), [R] gives a principal PU(n)-bundle P over BG.
- Pull \tilde{P} back along the inclusion $\mathcal{G}^{(0)} \subseteq B\mathcal{G}$ to get a principal PU(n)-bundle P over $\mathcal{G}^{(0)}$, which comes with a \mathcal{G} -action.
- If *P* lifts (as a bundle) to a *U*(*n*)-bundle over *G*⁽⁰⁾, we get an affiliated vector bundle

- [Moe98] For any étale groupoid \mathcal{G} and any abelian \mathcal{G} -sheaf \mathcal{A} , $H^2(\mathcal{G}, \mathcal{A}) \cong H^2(B\mathcal{G}, \mathcal{A})$; we want $\mathcal{A} = \mathcal{S}$ (sheaf of continuous \mathbb{T} -valued functions on $\mathcal{G}^{(0)}$)
- The Serre-Grothendieck Theorem says that, since [R] has order n in H²(G, S), [R] gives a principal PU(n)-bundle P over BG.
- Pull \tilde{P} back along the inclusion $\mathcal{G}^{(0)} \subseteq B\mathcal{G}$ to get a principal PU(n)-bundle P over $\mathcal{G}^{(0)}$, which comes with a \mathcal{G} -action.
- If *P* lifts (as a bundle) to a *U*(*n*)-bundle over $\mathcal{G}^{(0)}$, we get an affiliated vector bundle this is our twisted vector bundle.

References

- P. Bouwknegt and V. Mathai, <u>D-branes</u>, <u>B-fields and twisted</u> <u>K-theory</u>, J. High Energy Phys. **3** (2000), 7–11.
- C. Farsi and E. Gillaspy, <u>Twists over étale groupoids and</u> <u>twisted vector bundles</u>, Proc. Amer. Math. Soc. **144** (2016), 3767–3779.
- A. Kumjian, <u>On equivariant sheaf cohomology and elementary</u> *C**-bundles, J. Operator Theory **20** (1988), 207–240.
- I. Moerdijk, Proof of a conjecture of Haefliger, Topology 37 (1998), 735–741.
- J.-L. Tu, P. Xu, and C. Laurent-Gengoux, <u>Twisted K-theory of</u> <u>differentiable stacks</u>, Ann. Sci. ENS **37** (2004), 841–910.
 - S. Willerton, The twisted Drinfeld double of a finite group via

Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank n, then \mathcal{R} represents a class of order n in $H^2(\mathcal{G}, \mathcal{S})$.

Proof.

 If you have a rank-n twisted vector bundle E – a map *R* → *GL_n(E)* – composing with the determinant & normalizing gives a map ψ : *R* → T such that ψ(z · ρ) = zⁿψ(ρ), for any ρ ∈ *R*.

Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank n, then \mathcal{R} represents a class of order n in $H^2(\mathcal{G}, \mathcal{S})$.

- If you have a rank-n twisted vector bundle E a map *R* → *GL_n(E)* – composing with the determinant & normalizing gives a map ψ : *R* → T such that ψ(z · ρ) = zⁿψ(ρ), for any ρ ∈ *R*.
- Every element of \mathcal{R}^n looks like $(z, [\gamma, \dots, \gamma])$ for some $\gamma \in \mathcal{G}$.

Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank n, then \mathcal{R} represents a class of order n in $H^2(\mathcal{G}, \mathcal{S})$.

- If you have a rank-*n* twisted vector bundle E a map $\mathcal{R} \to GL_n(E)$ composing with the determinant & normalizing gives a map $\psi : \mathcal{R} \to \mathbb{T}$ such that $\psi(z \cdot \rho) = z^n \psi(\rho)$, for any $\rho \in \mathcal{R}$.
- Every element of \mathcal{R}^n looks like $(z, [\gamma, \dots, \gamma])$ for some $\gamma \in \mathcal{G}$. So the map $\varphi : \mathcal{R}^n \to \mathbb{T}$ given by $\varphi(z, [\gamma, \dots, \gamma]) = z\psi(\gamma, 1)$ is well-defined

Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank n, then \mathcal{R} represents a class of order n in $H^2(\mathcal{G}, \mathcal{S})$.

- If you have a rank-*n* twisted vector bundle E a map $\mathcal{R} \to GL_n(E)$ composing with the determinant & normalizing gives a map $\psi : \mathcal{R} \to \mathbb{T}$ such that $\psi(z \cdot \rho) = z^n \psi(\rho)$, for any $\rho \in \mathcal{R}$.
- Every element of Rⁿ looks like (z, [γ,...,γ]) for some γ ∈ G.
 So the map φ : Rⁿ → T given by φ(z, [γ,...,γ]) = zψ(γ, 1) is well-defined and T-equivariant.

Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank n, then \mathcal{R} represents a class of order n in $H^2(\mathcal{G}, \mathcal{S})$.

- If you have a rank-*n* twisted vector bundle E a map $\mathcal{R} \to GL_n(E)$ composing with the determinant & normalizing gives a map $\psi : \mathcal{R} \to \mathbb{T}$ such that $\psi(z \cdot \rho) = z^n \psi(\rho)$, for any $\rho \in \mathcal{R}$.
- Every element of Rⁿ looks like (z, [γ,...,γ]) for some γ ∈ G. So the map φ : Rⁿ → T given by φ(z, [γ,...,γ]) = zψ(γ, 1) is well-defined and T-equivariant.
- It follows that we have a section σ of the principal bundle $\mathcal{R}^n \to \mathcal{G}$ which is also a groupoid homomorphism:
Introduction Definitions Example Proof of Theorem

Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank n, then \mathcal{R} represents a class of order n in $H^2(\mathcal{G}, \mathcal{S})$.

Proof.

- If you have a rank-n twisted vector bundle E a map *R* → *GL_n(E)* – composing with the determinant & normalizing gives a map ψ : *R* → T such that ψ(z · ρ) = zⁿψ(ρ), for any ρ ∈ *R*.
- Every element of Rⁿ looks like (z, [γ,...,γ]) for some γ ∈ G. So the map φ : Rⁿ → T given by φ(z, [γ,...,γ]) = zψ(γ, 1) is well-defined and T-equivariant.
- It follows that we have a section σ of the principal bundle *Rⁿ* → *G* which is also a groupoid homomorphism: σ(γ) = (ψ(γ, 1), [γ,..., γ]).

Introduction Definitions Example Proof of Theorem

Proof.

- If you have a rank-n twisted vector bundle E a map *R* → *GL_n(E)* – composing with the determinant & normalizing gives a map ψ : *R* → T such that ψ(z · ρ) = zⁿψ(ρ), for any ρ ∈ *R*.
- Every element of Rⁿ looks like (z, [γ,...,γ]) for some γ ∈ G. So the map φ : Rⁿ → T given by φ(z, [γ,...,γ]) = zψ(γ, 1) is well-defined and T-equivariant.
- It follows that we have a section σ of the principal bundle $\mathcal{R}^n \to \mathcal{G}$ which is also a groupoid homomorphism: $\sigma(\gamma) = (\psi(\gamma, 1), [\gamma, \dots, \gamma])$. Consequently, $\mathcal{R}^n \cong \mathcal{G} \times \mathbb{T}$ is trivial.

Introduction Definitions Example Proof of Theorem

Proof.

- If you have a rank-n twisted vector bundle E a map *R* → *GL_n(E)* – composing with the determinant & normalizing gives a map ψ : *R* → T such that ψ(z · ρ) = zⁿψ(ρ), for any ρ ∈ *R*.
- Every element of Rⁿ looks like (z, [γ,...,γ]) for some γ ∈ G. So the map φ : Rⁿ → T given by φ(z, [γ,...,γ]) = zψ(γ, 1) is well-defined and T-equivariant.
- It follows that we have a section σ of the principal bundle $\mathcal{R}^n \to \mathcal{G}$ which is also a groupoid homomorphism: $\sigma(\gamma) = (\psi(\gamma, 1), [\gamma, \dots, \gamma])$. Consequently, $\mathcal{R}^n \cong \mathcal{G} \times \mathbb{T}$ is trivial.

Return