# Twists over étale groupoids and twisted vector bundles 

## Carla Farsi and Elizabeth Gillaspy

University of Colorado - Boulder and WWU - Münster
Groupoidfest, University of Colorado - Boulder 25 March 2017

## Motivation

For a groupoid $\mathcal{G}$ with $\mathcal{G}^{(0)}=M$ and a twist $\mathcal{R}$ over $\mathcal{G}$,

$$
K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)
$$

classifies $D$-brane charges in Type IIB string theories over $M$ [Wit98, BM00]

## Motivation

For a groupoid $\mathcal{G}$ with $\mathcal{G}^{(0)}=M$ and a twist $\mathcal{R}$ over $\mathcal{G}$,

$$
K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)
$$

classifies $D$-brane charges in Type IIB string theories over $M$ [Wit98, BM00] The twist $\mathcal{R}$ represents the field strength of the $B$-field.

## Motivation

For a groupoid $\mathcal{G}$ with $\mathcal{G}^{(0)}=M$ and a twist $\mathcal{R}$ over $\mathcal{G}$,

$$
K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)
$$

classifies $D$-brane charges in Type IIB string theories over $M$ [Wit98, BM00] The twist $\mathcal{R}$ represents the field strength of the $B$-field.

In general [TXLG04] these K-theory classes are given by $\mathcal{G}$-invariant Fredholm operators on an infinite-dimensional bundle over $M$.

## Motivation

For a groupoid $\mathcal{G}$ with $\mathcal{G}^{(0)}=M$ and a twist $\mathcal{R}$ over $\mathcal{G}$,

$$
K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)
$$

classifies $D$-brane charges in Type IIB string theories over $M$ [Wit98, BM00] The twist $\mathcal{R}$ represents the field strength of the $B$-field.

In general [TXLG04] these K-theory classes are given by $\mathcal{G}$-invariant Fredholm operators on an infinite-dimensional bundle over $M$. (The bundle is determined by the twist $\mathcal{R}$.)

## Motivation

For a groupoid $\mathcal{G}$ with $\mathcal{G}^{(0)}=M$ and a twist $\mathcal{R}$ over $\mathcal{G}$,

$$
K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)
$$

classifies $D$-brane charges in Type IIB string theories over $M$ [Wit98, BM00] The twist $\mathcal{R}$ represents the field strength of the $B$-field.

In general [TXLG04] these K-theory classes are given by $\mathcal{G}$-invariant Fredholm operators on an infinite-dimensional bundle over $M$. (The bundle is determined by the twist $\mathcal{R}$.)

## Question:

When can $K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)$ be understood in terms of vector bundles?

## Motivation

## Question:

When can $K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)$ be understood in terms of vector bundles?

## Motivation

## Question:

When can $K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)$ be understood in terms of vector bundles?

Necessary conditions:

## Motivation

## Question:

When can $K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)$ be understood in terms of vector bundles?

Necessary conditions:

- The twist $\mathcal{R}$ must represent a torsion element of $H^{2}(\mathcal{G}, \mathcal{S})$.


## Motivation

## Question:

When can $K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)$ be understood in terms of vector bundles?

Necessary conditions:

- The twist $\mathcal{R}$ must represent a torsion element of $H^{2}(\mathcal{G}, \mathcal{S})$.
- Other more-or-less technical conditions (Theorem 5.28 of [TXLG04])


## Motivation

## Question:

When can $K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)$ be understood in terms of vector bundles?

Necessary conditions:

- The twist $\mathcal{R}$ must represent a torsion element of $H^{2}(\mathcal{G}, \mathcal{S})$.
- Other more-or-less technical conditions (Theorem 5.28 of [TXLG04])
- There must exist vector bundles over $\mathcal{G}^{(0)}$ which are compatible with the twist $\mathcal{R}$.


## Motivation

## Question:

When can $K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)$ be understood in terms of vector bundles?

Necessary conditions:

- The twist $\mathcal{R}$ must represent a torsion element of $H^{2}(\mathcal{G}, \mathcal{S})$.
- Other more-or-less technical conditions (Theorem 5.28 of [TXLG04])
- There must exist vector bundles over $\mathcal{G}^{(0)}$ which are compatible with the twist $\mathcal{R}$. Twisted vector bundles


## Motivation

## Question:

When can $K_{0}\left(C_{r}^{*}(\mathcal{G} ; \mathcal{R})\right)$ be understood in terms of vector bundles?

Necessary conditions:

- The twist $\mathcal{R}$ must represent a torsion element of $H^{2}(\mathcal{G}, \mathcal{S})$.
- Other more-or-less technical conditions (Theorem 5.28 of [TXLG04])
- There must exist vector bundles over $\mathcal{G}^{(0)}$ which are compatible with the twist $\mathcal{R}$. Twisted vector bundles
[TXLG04] conjectured that their existence is implied by $[\mathcal{R}]$ torsion.


## When do twisted vector bundles exist?

## Theorem (Farsi-G, [FG16])

Let $\mathcal{G}$ be an étale groupoid and let $\mathcal{R}$ be a twist over $\mathcal{G}$, of order $n$ in $H^{2}(\mathcal{G}, \mathcal{S})$. Suppose that the classifying space $B \mathcal{G}$ is a compact CW complex, and that the principal $P U(n)$-bundle over $\mathcal{G}^{(0)}$ induced by $\mathcal{R}$ lifts to a $U(n)$ principal bundle. Then $\mathcal{R}$ admits a twisted vector bundle.

## Outline

- Definitions


## Outline

- Definitions
- Example


## Outline

- Definitions
- Example
- Proof of main Theorem


## Étale Groupoids

We want groupoids $\mathcal{G}$ to have a locally compact Hausdorff topology with respect to which multiplication and inversion are continuous.

## Étale Groupoids

We want groupoids $\mathcal{G}$ to have a locally compact Hausdorff topology with respect to which multiplication and inversion are continuous.

The unit space $\mathcal{G}^{(0)}$ is then always closed in $\mathcal{G}$; we say $\mathcal{G}$ is étale if $\mathcal{G}^{(0)} \subseteq \mathcal{G}$ is open and $r, s$ are local homeomorphisms.

## Étale Groupoids

We want groupoids $\mathcal{G}$ to have a locally compact Hausdorff topology with respect to which multiplication and inversion are continuous.

The unit space $\mathcal{G}^{(0)}$ is then always closed in $\mathcal{G}$; we say $\mathcal{G}$ is étale if $\mathcal{G}^{(0)} \subseteq \mathcal{G}$ is open and $r, s$ are local homeomorphisms.

Examples:

- If $G$ is a discrete group, $G$ is étale.


## Étale Groupoids

We want groupoids $\mathcal{G}$ to have a locally compact Hausdorff topology with respect to which multiplication and inversion are continuous.

The unit space $\mathcal{G}^{(0)}$ is then always closed in $\mathcal{G}$; we say $\mathcal{G}$ is étale if $\mathcal{G}^{(0)} \subseteq \mathcal{G}$ is open and $r, s$ are local homeomorphisms.

Examples:

- If $G$ is a discrete group, $G$ is étale.
- If $G$ is a discrete group, $X \rtimes G$ is étale.


## Étale Groupoids

We want groupoids $\mathcal{G}$ to have a locally compact Hausdorff topology with respect to which multiplication and inversion are continuous.

The unit space $\mathcal{G}^{(0)}$ is then always closed in $\mathcal{G}$; we say $\mathcal{G}$ is étale if $\mathcal{G}^{(0)} \subseteq \mathcal{G}$ is open and $r, s$ are local homeomorphisms.

Examples:

- If $G$ is a discrete group, $G$ is étale.
- If $G$ is a discrete group, $X \rtimes G$ is étale.
- A vector bundle is NOT étale.


## Twists over groupoids

Let $G$ be a group. A principal $G$-bundle over a space $X$ is a locally trivial $G$-space $E$ with $E / G \cong X$.

## Twists over groupoids

Let $G$ be a group. A principal $G$-bundle over a space $X$ is a locally trivial $G$-space $E$ with $E / G \cong X$.

A twist over a (topological) groupoid $\mathcal{G}$ is a principal $\mathbb{T}$-bundle $p: \mathcal{R} \rightarrow \mathcal{G}$, such that $\mathcal{R}$ is also a groupoid in a compatible way:

$$
r(\gamma)=r(p(\gamma)), \quad s(\gamma)=s(p(\gamma)), \quad p(\gamma \eta)=p(\gamma) p(\eta) \forall(\gamma, \eta) \in \mathcal{R}^{(2)}
$$

## Twists over groupoids

Let $G$ be a group. A principal $G$-bundle over a space $X$ is a locally trivial $G$-space $E$ with $E / G \cong X$.

A twist over a (topological) groupoid $\mathcal{G}$ is a principal $\mathbb{T}$-bundle $p: \mathcal{R} \rightarrow \mathcal{G}$, such that $\mathcal{R}$ is also a groupoid in a compatible way:
$r(\gamma)=r(p(\gamma)), \quad s(\gamma)=s(p(\gamma)), \quad p(\gamma \eta)=p(\gamma) p(\eta) \forall(\gamma, \eta) \in \mathcal{R}^{(2)}$

## Example

If $c: \mathcal{G}^{(2)} \rightarrow \mathbb{T}$ is a continuous 2-cocycle, then $\mathcal{G} \times \mathbb{T}$ is a twist over $\mathcal{G}$ :

$$
(g, z)(h, w):=(g h, c(g, h) z w)
$$

## Twists over groupoids

Let $\mathcal{S}$ denote the trivial sheaf with fibers $\mathbb{T}$. Twists give rise to elements of $H^{2}(\mathcal{G}, \mathcal{S})$;

## Twists over groupoids

Let $\mathcal{S}$ denote the trivial sheaf with fibers $\mathbb{T}$. Twists give rise to elements of $H^{2}(\mathcal{G}, \mathcal{S})$; [Kum88] constructs a long exact sequence
$\cdots H^{1}(\mathcal{G}, \mathcal{S}) \rightarrow H^{1}\left(\mathcal{G}^{(0)}, \mathcal{S}\right) \rightarrow T w(\mathcal{G}) \rightarrow H^{2}(\mathcal{G}, \mathcal{S}) \rightarrow H^{2}\left(\mathcal{G}^{(0)}, \mathcal{S}\right) \cdots$

## Twists over groupoids

Let $\mathcal{S}$ denote the trivial sheaf with fibers $\mathbb{T}$. Twists give rise to elements of $H^{2}(\mathcal{G}, \mathcal{S})$; [Kum88] constructs a long exact sequence
$\cdots H^{1}(\mathcal{G}, \mathcal{S}) \rightarrow H^{1}\left(\mathcal{G}^{(0)}, \mathcal{S}\right) \rightarrow \operatorname{Tw}(\mathcal{G}) \rightarrow H^{2}(\mathcal{G}, \mathcal{S}) \rightarrow H^{2}\left(\mathcal{G}^{(0)}, \mathcal{S}\right) \cdots$
If $\mathcal{G}$ is nice (proper; or, $\mathcal{G}^{(0)}$ zero-dimensional) then

$$
H^{2}(\mathcal{G}, \mathcal{S}) \cong H^{3}(\mathcal{G}, \mathbb{Z})
$$

## Twists over groupoids

Let $\mathcal{S}$ denote the trivial sheaf with fibers $\mathbb{T}$.
Twists give rise to elements of $H^{2}(\mathcal{G}, \mathcal{S})$; [Kum88] constructs a long exact sequence
$\cdots H^{1}(\mathcal{G}, \mathcal{S}) \rightarrow H^{1}\left(\mathcal{G}^{(0)}, \mathcal{S}\right) \rightarrow \operatorname{Tw}(\mathcal{G}) \rightarrow H^{2}(\mathcal{G}, \mathcal{S}) \rightarrow H^{2}\left(\mathcal{G}^{(0)}, \mathcal{S}\right) \cdots$
If $\mathcal{G}$ is nice (proper; or, $\mathcal{G}^{(0)}$ zero-dimensional) then

$$
H^{2}(\mathcal{G}, \mathcal{S}) \cong H^{3}(\mathcal{G}, \mathbb{Z})
$$

Product of twists is given by Baer sum:

$$
\mathcal{R}_{1} * \mathcal{R}_{2}=\left(\mathcal{R}_{1} \times \mathcal{G} \mathcal{R}_{2}\right) / \sim, \quad\left(\gamma_{1}, z \gamma_{2}\right) \sim\left(z \gamma_{1}, \gamma_{2}\right) \forall z \in \mathbb{T}, \gamma_{i} \in \mathcal{R}_{i}
$$

## Twists over groupoids

Let $\mathcal{S}$ denote the trivial sheaf with fibers $\mathbb{T}$.
Twists give rise to elements of $H^{2}(\mathcal{G}, \mathcal{S})$; [Kum88] constructs a long exact sequence
$\cdots H^{1}(\mathcal{G}, \mathcal{S}) \rightarrow H^{1}\left(\mathcal{G}^{(0)}, \mathcal{S}\right) \rightarrow \operatorname{Tw}(\mathcal{G}) \rightarrow H^{2}(\mathcal{G}, \mathcal{S}) \rightarrow H^{2}\left(\mathcal{G}^{(0)}, \mathcal{S}\right) \cdots$
If $\mathcal{G}$ is nice (proper; or, $\mathcal{G}^{(0)}$ zero-dimensional) then

$$
H^{2}(\mathcal{G}, \mathcal{S}) \cong H^{3}(\mathcal{G}, \mathbb{Z})
$$

Product of twists is given by Baer sum:
$\mathcal{R}_{1} * \mathcal{R}_{2}=\left(\mathcal{R}_{1} \times_{\mathcal{G}} \mathcal{R}_{2}\right) / \sim, \quad\left(\gamma_{1}, z \gamma_{2}\right) \sim\left(z \gamma_{1}, \gamma_{2}\right) \forall z \in \mathbb{T}, \gamma_{i} \in \mathcal{R}_{i}$
Alternatively, equivalence classes of twists correspond to $S^{1}$-gerbes over the stack $\mathfrak{X}_{\mathcal{G}}$.

## Twists over groupoids and their $C^{*}$-algebras

Given a groupoid $\mathcal{G}$ with:

- a locally compact Hausdorff topology,


## Twists over groupoids and their $C^{*}$-algebras

Given a groupoid $\mathcal{G}$ with:

- a locally compact Hausdorff topology,
- a Haar system $\left\{\lambda^{u}\right\}_{u \in \mathcal{G}(0)}$,


## Twists over groupoids and their $C^{*}$-algebras

Given a groupoid $\mathcal{G}$ with:

- a locally compact Hausdorff topology,
- a Haar system $\left\{\lambda^{u}\right\}_{u \in \mathcal{G}(0)}$,
we can make $C_{c}(\mathcal{G})$ into a $*$-algebra:


## Twists over groupoids and their $C^{*}$-algebras

Given a groupoid $\mathcal{G}$ with:

- a locally compact Hausdorff topology,
- a Haar system $\left\{\lambda^{u}\right\}_{u \in \mathcal{G}(0)}$,
we can make $C_{c}(\mathcal{G})$ into a $*$-algebra:

$$
\begin{aligned}
f * g(x) & :=\int f(x y) g\left(y^{-1}\right) d \lambda^{s(x)}(y) \\
f^{*}(x) & :=\overline{f\left(x^{-1}\right)} .
\end{aligned}
$$

## Twists over groupoids and their $C^{*}$-algebras

Given a groupoid $\mathcal{G}$ with:

- a locally compact Hausdorff topology,
- a Haar system $\left\{\lambda^{u}\right\}_{u \in \mathcal{G}(0)}$,
we can make $C_{c}(\mathcal{G})$ into a $*$-algebra:

$$
\begin{aligned}
f * g(x) & :=\int f(x y) g\left(y^{-1}\right) d \lambda^{s(x)}(y) \\
f^{*}(x) & :=\overline{f\left(x^{-1}\right)} .
\end{aligned}
$$

If $\mathcal{G}$ is étale, each fiber $\mathcal{G}^{u}$ is discrete, so we take $\lambda^{u}$ to be counting measure.

## Reduced groupoid C*-algebras

To make $C_{c}(\mathcal{G})$ into $C_{r}^{*}(\mathcal{G})$, we represent it on $L^{2}\left(\mathcal{G}, \nu^{-1}\right)$ by left convolution multiplication.

## Reduced groupoid C*-algebras

To make $C_{c}(\mathcal{G})$ into $C_{r}^{*}(\mathcal{G})$, we represent it on $L^{2}\left(\mathcal{G}, \nu^{-1}\right)$ by left convolution multiplication.

$$
\nu^{-1}(f)=\int_{\mathcal{G}^{(0)}} \int_{\mathcal{G}} f\left(\gamma^{-1}\right) d \lambda^{u}(\gamma) d \mu(u)
$$

for any quasi-invariant Radon measure $\mu$ on $\mathcal{G}^{(0)}$.

## Reduced groupoid C*-algebras

To make $C_{c}(\mathcal{G})$ into $C_{r}^{*}(\mathcal{G})$, we represent it on $L^{2}\left(\mathcal{G}, \nu^{-1}\right)$ by left convolution multiplication.

$$
\nu^{-1}(f)=\int_{\mathcal{G}^{(0)}} \int_{\mathcal{G}} f\left(\gamma^{-1}\right) d \lambda^{u}(\gamma) d \mu(u)
$$

for any quasi-invariant Radon measure $\mu$ on $\mathcal{G}^{(0)}$.
The representation $\pi: C_{c}(\mathcal{G}) \rightarrow B\left(L^{2}\left(\mathcal{G}, \nu^{-1}\right)\right)$ is given by

$$
\pi(f) \xi(x)=f * \xi(x)=\int f(x y) \xi\left(y^{-1}\right) d \lambda^{s(x)}(y)
$$

## Reduced groupoid $C^{*}$-algebras

To make $C_{c}(\mathcal{G})$ into $C_{r}^{*}(\mathcal{G})$, we represent it on $L^{2}\left(\mathcal{G}, \nu^{-1}\right)$ by left convolution multiplication.

$$
\nu^{-1}(f)=\int_{\mathcal{G}^{(0)}} \int_{\mathcal{G}} f\left(\gamma^{-1}\right) d \lambda^{u}(\gamma) d \mu(u)
$$

for any quasi-invariant Radon measure $\mu$ on $\mathcal{G}^{(0)}$.
The representation $\pi: C_{c}(\mathcal{G}) \rightarrow B\left(L^{2}\left(\mathcal{G}, \nu^{-1}\right)\right)$ is given by

$$
\begin{gathered}
\pi(f) \xi(x)=f * \xi(x)=\int f(x y) \xi\left(y^{-1}\right) d \lambda^{s(x)}(y) \\
C_{r}^{*}(\mathcal{G})=\overline{C_{c}(\mathcal{G})} \subseteq B\left(L^{2}\left(\mathcal{G}, \nu^{-1}\right)\right)
\end{gathered}
$$

## Twisted groupoid $C^{*}$-algebras

Given a twist $p: \mathcal{R} \rightarrow \mathcal{G}$,

$$
C_{c}(\mathcal{G} ; \mathcal{R}):=\{f: \mathcal{R} \rightarrow \mathbb{C} \text { such that } f(z \cdot r)=\bar{z} \cdot f(r)\} .
$$

## Twisted groupoid $C^{*}$-algebras

Given a twist $p: \mathcal{R} \rightarrow \mathcal{G}$,

$$
C_{c}(\mathcal{G} ; \mathcal{R}):=\{f: \mathcal{R} \rightarrow \mathbb{C} \text { such that } f(z \cdot r)=\bar{z} \cdot f(r)\} .
$$

This is a convolution algebra:

$$
f * g(r):=\int_{\mathcal{G}} f(r s) g\left(s^{-1}\right) d \lambda^{s(r)}(p(s)), \quad f^{*}(r):=\overline{f\left(r^{-1}\right)}
$$

## Twisted groupoid $C^{*}$-algebras

Given a twist $p: \mathcal{R} \rightarrow \mathcal{G}$,

$$
C_{c}(\mathcal{G} ; \mathcal{R}):=\{f: \mathcal{R} \rightarrow \mathbb{C} \text { such that } f(z \cdot r)=\bar{z} \cdot f(r)\} .
$$

This is a convolution algebra:

$$
f * g(r):=\int_{\mathcal{G}} f(r s) g\left(s^{-1}\right) d \lambda^{s(r)}(p(s)), \quad f^{*}(r):=\overline{f\left(r^{-1}\right)}
$$

The reduced twisted $C^{*}$-algebra $C_{r}^{*}(\mathcal{G} ; \mathcal{R})$ arises from representing $C_{c}(\mathcal{G} ; \mathcal{R})$ on $L^{2}\left(\mathcal{G}, \nu^{-1}\right)$.

## Twisted groupoid $C^{*}$-algebras

Given a twist $p: \mathcal{R} \rightarrow \mathcal{G}$,

$$
C_{c}(\mathcal{G} ; \mathcal{R}):=\{f: \mathcal{R} \rightarrow \mathbb{C} \text { such that } f(z \cdot r)=\bar{z} \cdot f(r)\} .
$$

This is a convolution algebra:

$$
f * g(r):=\int_{\mathcal{G}} f(r s) g\left(s^{-1}\right) d \lambda^{s(r)}(p(s)), \quad f^{*}(r):=\overline{f\left(r^{-1}\right)}
$$

The reduced twisted $C^{*}$-algebra $C_{r}^{*}(\mathcal{G} ; \mathcal{R})$ arises from representing $C_{c}(\mathcal{G} ; \mathcal{R})$ on $L^{2}\left(\mathcal{G}, \nu^{-1}\right)$.
If $\mathcal{R}$ arises from a 2-cocycle $c$, then $C_{r}^{*}(\mathcal{G} ; \mathcal{R}) \cong \overline{C_{c}(\mathcal{G}, c)}$ :

$$
f *_{c} g(\gamma)=\int_{\mathcal{G}} f(\gamma \eta) g\left(\eta^{-1}\right) c\left(\gamma \eta, \eta^{-1}\right) d \lambda^{s(\gamma)}(\eta)
$$

## Twisted vector bundles

Let $\mathcal{R}$ be a twist over $\mathcal{G}$ (principal $\mathbb{T}$-bundle over $\mathcal{G}$ ). A twisted vector bundle is a vector bundle

$$
\pi: E \rightarrow\left(\mathcal{G}^{(0)}=\mathcal{R}^{(0)}\right)
$$

which admits an action of $\mathcal{R}$ such that, for all $z \in \mathbb{T}, \gamma \in \mathcal{R}, e \in E$ with $\pi(e)=s(\gamma)$,

$$
(z \cdot \gamma) \cdot e=z(\gamma \cdot e)
$$

## Twisted vector bundles

Let $\mathcal{R}$ be a twist over $\mathcal{G}$ (principal $\mathbb{T}$-bundle over $\mathcal{G}$ ). A twisted vector bundle is a vector bundle

$$
\pi: E \rightarrow\left(\mathcal{G}^{(0)}=\mathcal{R}^{(0)}\right)
$$

which admits an action of $\mathcal{R}$ such that, for all $z \in \mathbb{T}, \gamma \in \mathcal{R}, e \in E$ with $\pi(e)=s(\gamma)$,

$$
(z \cdot \gamma) \cdot e=z(\gamma \cdot e)
$$

## Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank $n$, then $\mathcal{R}$ represents a class of order $n$ in $H^{2}(\mathcal{G}, \mathcal{S})$.

Proof:

## Classifying space

One way to realize the standard $k$-simplex $\Delta_{k}$ :

$$
\Delta_{k}=\left\{\left(t_{1}, \ldots, t_{k}\right): 0 \leq t_{1} \leq \cdots \leq t_{k} \leq 1\right\}
$$

## Classifying space

One way to realize the standard $k$-simplex $\Delta_{k}$ :

$$
\Delta_{k}=\left\{\left(t_{1}, \ldots, t_{k}\right): 0 \leq t_{1} \leq \cdots \leq t_{k} \leq 1\right\}
$$

$$
B \mathcal{G}=\left(\bigsqcup_{k \in \mathbb{N}} \mathcal{G}^{(k)} \times \Delta_{k}\right) / \sim, \quad \text { where }
$$

$$
\begin{aligned}
& \left(\left(g_{1}, \ldots, g_{k}\right),\left(t_{1}, \ldots, t_{i}, t_{i}, t_{i+1}, \ldots, t_{k-1}\right)\right) \\
& \quad \sim\left(\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{k}\right),\left(t_{1}, \ldots, t_{i}, t_{i+1}, \ldots, t_{k-1}\right)\right) .
\end{aligned}
$$

## Classifying space

One way to realize the standard $k$-simplex $\Delta_{k}$ :

$$
\Delta_{k}=\left\{\left(t_{1}, \ldots, t_{k}\right): 0 \leq t_{1} \leq \cdots \leq t_{k} \leq 1\right\}
$$

$$
B \mathcal{G}=\left(\bigsqcup_{k \in \mathbb{N}} \mathcal{G}^{(k)} \times \Delta_{k}\right) / \sim, \quad \text { where }
$$

$$
\begin{aligned}
& \left(\left(g_{1}, \ldots, g_{k}\right),\left(t_{1}, \ldots, t_{i}, t_{i}, t_{i+1}, \ldots, t_{k-1}\right)\right) \\
& \quad \sim\left(\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{k}\right),\left(t_{1}, \ldots, t_{i}, t_{i+1}, \ldots, t_{k-1}\right)\right) .
\end{aligned}
$$

Think of groupoid $k$-tuples as labeling $k$-simplices:

## Classifying space

One way to realize the standard $k$-simplex $\Delta_{k}$ :

$$
\Delta_{k}=\left\{\left(t_{1}, \ldots, t_{k}\right): 0 \leq t_{1} \leq \cdots \leq t_{k} \leq 1\right\}
$$

$$
B \mathcal{G}=\left(\bigsqcup_{k \in \mathbb{N}} \mathcal{G}^{(k)} \times \Delta_{k}\right) / \sim, \quad \text { where }
$$

$$
\begin{aligned}
& \left(\left(g_{1}, \ldots, g_{k}\right),\left(t_{1}, \ldots, t_{i}, t_{i}, t_{i+1}, \ldots, t_{k-1}\right)\right) \\
& \quad \sim\left(\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{k}\right),\left(t_{1}, \ldots, t_{i}, t_{i+1}, \ldots, t_{k-1}\right)\right) .
\end{aligned}
$$

Think of groupoid $k$-tuples as labeling $k$-simplices: the various possible partial products label the faces.

## Classifying space

Note:

- For all $k$, the map $\phi_{k}: \mathcal{G}^{(k)} \rightarrow B \mathcal{G}$ given by

$$
\phi_{k}\left(g_{1}, \ldots, g_{k}\right)=\left[\left(g_{1}, \ldots, g_{k}\right),(0, \ldots, 0)\right]
$$

is continuous, and intertwines with the face/degeneracy maps.

## Classifying space

Note:

- For all $k$, the map $\phi_{k}: \mathcal{G}^{(k)} \rightarrow B \mathcal{G}$ given by

$$
\phi_{k}\left(g_{1}, \ldots, g_{k}\right)=\left[\left(g_{1}, \ldots, g_{k}\right),(0, \ldots, 0)\right]
$$

is continuous, and intertwines with the face/degeneracy maps.

- [Wil08] If $\mathcal{G}=M \rtimes G$, then $B \mathcal{G} \cong M \times{ }_{G} \mathcal{E} G$, where $\mathcal{E} G$ is any contractible space with a free action of $G$.


## Classifying space

Note:

- For all $k$, the map $\phi_{k}: \mathcal{G}^{(k)} \rightarrow B \mathcal{G}$ given by

$$
\phi_{k}\left(g_{1}, \ldots, g_{k}\right)=\left[\left(g_{1}, \ldots, g_{k}\right),(0, \ldots, 0)\right]
$$

is continuous, and intertwines with the face/degeneracy maps.

- [Wil08] If $\mathcal{G}=M \rtimes G$, then $B \mathcal{G} \cong M \times{ }_{G} \mathcal{E} G$, where $\mathcal{E} G$ is any contractible space with a free action of $G$.
Proof:
$k$-tuples in $\mathcal{G}$ are $\left(\left(g_{1}, \ldots, g_{k}\right), m\right)$.


## Classifying space

Note:

- For all $k$, the map $\phi_{k}: \mathcal{G}^{(k)} \rightarrow B \mathcal{G}$ given by

$$
\phi_{k}\left(g_{1}, \ldots, g_{k}\right)=\left[\left(g_{1}, \ldots, g_{k}\right),(0, \ldots, 0)\right]
$$

is continuous, and intertwines with the face/degeneracy maps.

- [Wil08] If $\mathcal{G}=M \rtimes G$, then $B \mathcal{G} \cong M \times{ }_{G} \mathcal{E} G$, where $\mathcal{E} G$ is any contractible space with a free action of $G$.
Proof:
$k$-tuples in $\mathcal{G}$ are $\left(\left(g_{1}, \ldots, g_{k}\right), m\right)$.
$\left[\left(\left(g_{1}, \ldots, g_{k}\right), m\right),\left(t_{1}, \ldots, t_{k}\right)\right] \mapsto\left[\left(m,\left(g_{1}, \ldots, g_{k}\right),\left(t_{1}, \ldots, t_{k}\right)\right)\right]$.


## When do twisted vector bundles exist?

## Theorem (Farsi-G, [FG16])

Let $\mathcal{G}$ be an étale groupoid and let $\mathcal{R}$ be a twist over $\mathcal{G}$, of order $n$ in $H^{2}(\mathcal{G}, \mathcal{S})$. Suppose that the classifying space $B \mathcal{G}$ is a compact CW complex, and that the principal $P U(n)$-bundle over $\mathcal{G}^{(0)}$ induced by $\mathcal{R}$ lifts to a $U(n)$ principal bundle. Then $\mathcal{R}$ admits a twisted vector bundle.

## When do twisted vector bundles exist?

## Theorem (Farsi-G, [FG16])

Let $\mathcal{G}$ be an étale groupoid and let $\mathcal{R}$ be a twist over $\mathcal{G}$, of order $n$ in $H^{2}(\mathcal{G}, \mathcal{S})$. Suppose that the classifying space $B \mathcal{G}$ is a compact CW complex, and that the principal $P U(n)$-bundle over $\mathcal{G}^{(0)}$ induced by $\mathcal{R}$ lifts to a $U(n)$ principal bundle. Then $\mathcal{R}$ admits a twisted vector bundle.

When do these hypotheses hold?

## An example

$$
\mathbb{R} P^{2}=\{(\rho, \theta): 0 \leq \rho \leq 1,0 \leq \theta<2 \pi\} / \sim \text { where }(1, \theta) \sim(1, \theta+\pi)
$$

## An example

$\mathbb{R} P^{2}=\{(\rho, \theta): 0 \leq \rho \leq 1,0 \leq \theta<2 \pi\} / \sim$ where $(1, \theta) \sim(1, \theta+\pi)$.
Fix $x \in \mathbb{R} \backslash \mathbb{Q}$. Set $\mathcal{G}:=M \rtimes_{\alpha} \mathbb{Z}$, where

$$
M=\mathbb{R} P^{2} \times S^{4} ; \quad \alpha([\rho, \theta], z)=([\rho, \theta+\rho x], z) .
$$

## An example

$\mathbb{R} P^{2}=\{(\rho, \theta): 0 \leq \rho \leq 1,0 \leq \theta<2 \pi\} / \sim$ where $(1, \theta) \sim(1, \theta+\pi)$.
Fix $x \in \mathbb{R} \backslash \mathbb{Q}$. Set $\mathcal{G}:=M \rtimes_{\alpha} \mathbb{Z}$, where

$$
M=\mathbb{R} P^{2} \times S^{4} ; \quad \alpha([\rho, \theta], z)=([\rho, \theta+\rho x], z) .
$$

Since $M$ is compact, $B \mathcal{G} \cong M \times_{\mathbb{Z}} \mathbb{R}$ is too.

## An example

$\mathbb{R} P^{2}=\{(\rho, \theta): 0 \leq \rho \leq 1,0 \leq \theta<2 \pi\} / \sim$ where $(1, \theta) \sim(1, \theta+\pi)$.
Fix $x \in \mathbb{R} \backslash \mathbb{Q}$. Set $\mathcal{G}:=M \rtimes_{\alpha} \mathbb{Z}$, where

$$
M=\mathbb{R} P^{2} \times S^{4} ; \quad \alpha([\rho, \theta], z)=([\rho, \theta+\rho x], z)
$$

Since $M$ is compact, $B \mathcal{G} \cong M \times_{\mathbb{Z}} \mathbb{R}$ is too.
Künneth Theorem calculations tell us
$\mathbb{Z} / 2 \mathbb{Z} \subseteq \operatorname{Tw}(\mathcal{G}) \cong H^{2}(M, \mathbb{Z}) ;$

## An example

$\mathbb{R} P^{2}=\{(\rho, \theta): 0 \leq \rho \leq 1,0 \leq \theta<2 \pi\} / \sim$ where $(1, \theta) \sim(1, \theta+\pi)$.
Fix $x \in \mathbb{R} \backslash \mathbb{Q}$. Set $\mathcal{G}:=M \rtimes_{\alpha} \mathbb{Z}$, where

$$
M=\mathbb{R} P^{2} \times S^{4} ; \quad \alpha([\rho, \theta], z)=([\rho, \theta+\rho x], z)
$$

Since $M$ is compact, $B \mathcal{G} \cong M \times_{\mathbb{Z}} \mathbb{R}$ is too.
Künneth Theorem calculations tell us
$\mathbb{Z} / 2 \mathbb{Z} \subseteq T w(\mathcal{G}) \cong H^{2}(M, \mathbb{Z})$; moreover, for any $n$, the obstruction to lifting a $P U(n)$-bundle over $M$ to a $U(n)$-bundle lives in

$$
H^{2}(M, \mathbb{T}) \cong H^{3}(M, \mathbb{Z}) \cong H^{3}\left(\mathbb{R} P^{2}, \mathbb{Z}\right) \otimes H^{0}\left(S^{4}, \mathbb{Z}\right)=0
$$

## Proof sketch

- [Moe98] For any étale groupoid $\mathcal{G}$ and any abelian $\mathcal{G}$-sheaf $\mathcal{A}$, $H^{2}(\mathcal{G}, \mathcal{A}) \cong H^{2}(B \mathcal{G}, A) ;$


## Proof sketch

- [Moe98] For any étale groupoid $\mathcal{G}$ and any abelian $\mathcal{G}$-sheaf $\mathcal{A}$, $H^{2}(\mathcal{G}, \mathcal{A}) \cong H^{2}(B \mathcal{G}, A)$; we want $\mathcal{A}=\mathcal{S}$ (sheaf of continuous $\mathbb{T}$-valued functions on $\mathcal{G}^{(0)}$ )


## Proof sketch

- [Moe98] For any étale groupoid $\mathcal{G}$ and any abelian $\mathcal{G}$-sheaf $\mathcal{A}$, $H^{2}(\mathcal{G}, \mathcal{A}) \cong H^{2}(B \mathcal{G}, A)$; we want $\mathcal{A}=\mathcal{S}$ (sheaf of continuous $\mathbb{T}$-valued functions on $\mathcal{G}^{(0)}$ )
- The Serre-Grothendieck Theorem says that, since $[\mathcal{R}]$ has order $n$ in $H^{2}(\mathcal{G}, \mathcal{S}),[\mathcal{R}]$ gives a principal $P U(n)$-bundle $\tilde{P}$ over $B \mathcal{G}$.


## Proof sketch

- [Moe98] For any étale groupoid $\mathcal{G}$ and any abelian $\mathcal{G}$-sheaf $\mathcal{A}$, $H^{2}(\mathcal{G}, \mathcal{A}) \cong H^{2}(B \mathcal{G}, A)$; we want $\mathcal{A}=\mathcal{S}$ (sheaf of continuous $\mathbb{T}$-valued functions on $\mathcal{G}^{(0)}$ )
- The Serre-Grothendieck Theorem says that, since $[\mathcal{R}]$ has order $n$ in $H^{2}(\mathcal{G}, \mathcal{S}),[\mathcal{R}]$ gives a principal $P U(n)$-bundle $\tilde{P}$ over $B \mathcal{G}$.
- Pull $\tilde{P}$ back along the inclusion $\mathcal{G}^{(0)} \subseteq B \mathcal{G}$ to get a principal $P U(n)$-bundle $P$ over $\mathcal{G}^{(0)}$, which comes with a $\mathcal{G}$-action.


## Proof sketch

- [Moe98] For any étale groupoid $\mathcal{G}$ and any abelian $\mathcal{G}$-sheaf $\mathcal{A}$, $H^{2}(\mathcal{G}, \mathcal{A}) \cong H^{2}(B \mathcal{G}, A)$; we want $\mathcal{A}=\mathcal{S}$ (sheaf of continuous $\mathbb{T}$-valued functions on $\mathcal{G}^{(0)}$ )
- The Serre-Grothendieck Theorem says that, since $[\mathcal{R}]$ has order $n$ in $H^{2}(\mathcal{G}, \mathcal{S}),[\mathcal{R}]$ gives a principal $P U(n)$-bundle $\tilde{P}$ over $B \mathcal{G}$.
- Pull $\tilde{P}$ back along the inclusion $\mathcal{G}^{(0)} \subseteq B \mathcal{G}$ to get a principal $P U(n)$-bundle $P$ over $\mathcal{G}^{(0)}$, which comes with a $\mathcal{G}$-action.
- If $P$ lifts (as a bundle) to a $U(n)$-bundle over $\mathcal{G}^{(0)}$, we get an affiliated vector bundle


## Proof sketch

- [Moe98] For any étale groupoid $\mathcal{G}$ and any abelian $\mathcal{G}$-sheaf $\mathcal{A}$, $H^{2}(\mathcal{G}, \mathcal{A}) \cong H^{2}(B \mathcal{G}, A)$; we want $\mathcal{A}=\mathcal{S}$ (sheaf of continuous $\mathbb{T}$-valued functions on $\mathcal{G}^{(0)}$ )
- The Serre-Grothendieck Theorem says that, since $[\mathcal{R}]$ has order $n$ in $H^{2}(\mathcal{G}, \mathcal{S}),[\mathcal{R}]$ gives a principal $P U(n)$-bundle $\tilde{P}$ over $B \mathcal{G}$.
- Pull $\tilde{P}$ back along the inclusion $\mathcal{G}^{(0)} \subseteq B \mathcal{G}$ to get a principal $P U(n)$-bundle $P$ over $\mathcal{G}^{(0)}$, which comes with a $\mathcal{G}$-action.
- If $P$ lifts (as a bundle) to a $U(n)$-bundle over $\mathcal{G}^{(0)}$, we get an affiliated vector bundle - this is our twisted vector bundle.


## References

R．Bouwknegt and V．Mathai，D－branes，$B$－fields and twisted K－theory，J．High Energy Phys． 3 （2000），7－11．

眉 C．Farsi and E．Gillaspy，Twists over étale groupoids and twisted vector bundles，Proc．Amer．Math．Soc． 144 （2016）， 3767－3779．
囯 A．Kumjian，On equivariant sheaf cohomology and elementary C＊－bundles，J．Operator Theory 20 （1988），207－240．

囯 I．Moerdijk，Proof of a conjecture of Haefliger，Topology 37 （1998），735－741．

目 J．－L．Tu，P．Xu，and C．Laurent－Gengoux，Twisted K－theory of differentiable stacks，Ann．Sci．ENS 37 （2004），841－910．

R．Willerton，The twisted Drinfeld double of a finite group via

## Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank $n$, then $\mathcal{R}$ represents a class of order $n$ in $H^{2}(\mathcal{G}, \mathcal{S})$.

## Proof.

- If you have a rank- $n$ twisted vector bundle $E$ - a map $\mathcal{R} \rightarrow G L_{n}(E)$ - composing with the determinant \& normalizing gives a map $\psi: \mathcal{R} \rightarrow \mathbb{T}$ such that $\psi(z \cdot \rho)=z^{n} \psi(\rho)$, for any $\rho \in \mathcal{R}$.


## Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank $n$, then $\mathcal{R}$ represents a class of order $n$ in $H^{2}(\mathcal{G}, \mathcal{S})$.

Proof.

- If you have a rank- $n$ twisted vector bundle $E$ - a map $\mathcal{R} \rightarrow G L_{n}(E)$ - composing with the determinant \& normalizing gives a map $\psi: \mathcal{R} \rightarrow \mathbb{T}$ such that $\psi(z \cdot \rho)=z^{n} \psi(\rho)$, for any $\rho \in \mathcal{R}$.
- Every element of $\mathcal{R}^{n}$ looks like $(z,[\gamma, \ldots, \gamma])$ for some $\gamma \in \mathcal{G}$.


## Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank $n$, then $\mathcal{R}$ represents a class of order $n$ in $H^{2}(\mathcal{G}, \mathcal{S})$.

Proof.

- If you have a rank- $n$ twisted vector bundle $E$ - a map $\mathcal{R} \rightarrow G L_{n}(E)$ - composing with the determinant \& normalizing gives a map $\psi: \mathcal{R} \rightarrow \mathbb{T}$ such that $\psi(z \cdot \rho)=z^{n} \psi(\rho)$, for any $\rho \in \mathcal{R}$.
- Every element of $\mathcal{R}^{n}$ looks like $(z,[\gamma, \ldots, \gamma])$ for some $\gamma \in \mathcal{G}$. So the map $\varphi: \mathcal{R}^{n} \rightarrow \mathbb{T}$ given by $\varphi(z,[\gamma, \ldots, \gamma])=z \psi(\gamma, 1)$ is well-defined


## Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank $n$, then $\mathcal{R}$ represents a class of order $n$ in $H^{2}(\mathcal{G}, \mathcal{S})$.

Proof.

- If you have a rank- $n$ twisted vector bundle $E$ - a map $\mathcal{R} \rightarrow G L_{n}(E)$ - composing with the determinant \& normalizing gives a map $\psi: \mathcal{R} \rightarrow \mathbb{T}$ such that $\psi(z \cdot \rho)=z^{n} \psi(\rho)$, for any $\rho \in \mathcal{R}$.
- Every element of $\mathcal{R}^{n}$ looks like $(z,[\gamma, \ldots, \gamma])$ for some $\gamma \in \mathcal{G}$. So the map $\varphi: \mathcal{R}^{n} \rightarrow \mathbb{T}$ given by $\varphi(z,[\gamma, \ldots, \gamma])=z \psi(\gamma, 1)$ is well-defined and $\mathbb{T}$-equivariant.


## Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank $n$, then $\mathcal{R}$ represents a class of order $n$ in $H^{2}(\mathcal{G}, \mathcal{S})$.

## Proof.

- If you have a rank- $n$ twisted vector bundle $E$ - a map $\mathcal{R} \rightarrow G L_{n}(E)$ - composing with the determinant \& normalizing gives a map $\psi: \mathcal{R} \rightarrow \mathbb{T}$ such that $\psi(z \cdot \rho)=z^{n} \psi(\rho)$, for any $\rho \in \mathcal{R}$.
- Every element of $\mathcal{R}^{n}$ looks like $(z,[\gamma, \ldots, \gamma])$ for some $\gamma \in \mathcal{G}$. So the map $\varphi: \mathcal{R}^{n} \rightarrow \mathbb{T}$ given by $\varphi(z,[\gamma, \ldots, \gamma])=z \psi(\gamma, 1)$ is well-defined and $\mathbb{T}$-equivariant.
- It follows that we have a section $\sigma$ of the principal bundle $\mathcal{R}^{n} \rightarrow \mathcal{G}$ which is also a groupoid homomorphism:


## Proposition (TXLG)

If $(\mathcal{G}, \mathcal{R})$ admits a twisted vector bundle of rank $n$, then $\mathcal{R}$ represents a class of order $n$ in $H^{2}(\mathcal{G}, \mathcal{S})$.

## Proof.

- If you have a rank- $n$ twisted vector bundle $E$ - a map $\mathcal{R} \rightarrow G L_{n}(E)$ - composing with the determinant \& normalizing gives a map $\psi: \mathcal{R} \rightarrow \mathbb{T}$ such that $\psi(z \cdot \rho)=z^{n} \psi(\rho)$, for any $\rho \in \mathcal{R}$.
- Every element of $\mathcal{R}^{n}$ looks like $(z,[\gamma, \ldots, \gamma])$ for some $\gamma \in \mathcal{G}$. So the map $\varphi: \mathcal{R}^{n} \rightarrow \mathbb{T}$ given by $\varphi(z,[\gamma, \ldots, \gamma])=z \psi(\gamma, 1)$ is well-defined and $\mathbb{T}$-equivariant.
- It follows that we have a section $\sigma$ of the principal bundle $\mathcal{R}^{n} \rightarrow \mathcal{G}$ which is also a groupoid homomorphism: $\sigma(\gamma)=(\psi(\gamma, 1),[\gamma, \ldots, \gamma])$.


## Proof.

- If you have a rank- $n$ twisted vector bundle $E$ - a map $\mathcal{R} \rightarrow G L_{n}(E)$ - composing with the determinant \& normalizing gives a map $\psi: \mathcal{R} \rightarrow \mathbb{T}$ such that $\psi(z \cdot \rho)=z^{n} \psi(\rho)$, for any $\rho \in \mathcal{R}$.
- Every element of $\mathcal{R}^{n}$ looks like $(z,[\gamma, \ldots, \gamma])$ for some $\gamma \in \mathcal{G}$. So the map $\varphi: \mathcal{R}^{n} \rightarrow \mathbb{T}$ given by $\varphi(z,[\gamma, \ldots, \gamma])=z \psi(\gamma, 1)$ is well-defined and $\mathbb{T}$-equivariant.
- It follows that we have a section $\sigma$ of the principal bundle $\mathcal{R}^{n} \rightarrow \mathcal{G}$ which is also a groupoid homomorphism:
$\sigma(\gamma)=(\psi(\gamma, 1),[\gamma, \ldots, \gamma])$. Consequently, $\mathcal{R}^{n} \cong \mathcal{G} \times \mathbb{T}$ is trivial.


## Proof.

- If you have a rank- $n$ twisted vector bundle $E$ - a map $\mathcal{R} \rightarrow G L_{n}(E)$ - composing with the determinant \& normalizing gives a map $\psi: \mathcal{R} \rightarrow \mathbb{T}$ such that $\psi(z \cdot \rho)=z^{n} \psi(\rho)$, for any $\rho \in \mathcal{R}$.
- Every element of $\mathcal{R}^{n}$ looks like $(z,[\gamma, \ldots, \gamma])$ for some $\gamma \in \mathcal{G}$. So the map $\varphi: \mathcal{R}^{n} \rightarrow \mathbb{T}$ given by $\varphi(z,[\gamma, \ldots, \gamma])=z \psi(\gamma, 1)$ is well-defined and $\mathbb{T}$-equivariant.
- It follows that we have a section $\sigma$ of the principal bundle $\mathcal{R}^{n} \rightarrow \mathcal{G}$ which is also a groupoid homomorphism:
$\sigma(\gamma)=(\psi(\gamma, 1),[\gamma, \ldots, \gamma])$. Consequently, $\mathcal{R}^{n} \cong \mathcal{G} \times \mathbb{T}$ is trivial.


## Return

