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Motivation

For a groupoid G with G(0) = M and a twist R over G,

K0(C ∗r (G;R))

classifies D-brane charges in Type IIB string theories over M
[Wit98, BM00]

The twist R represents the field strength of the
B-field.

In general [TXLG04] these K -theory classes are given by
G-invariant Fredholm operators on an infinite-dimensional bundle
over M. (The bundle is determined by the twist R.)

Question:

When can K0(C ∗r (G;R)) be understood in terms of vector bundles?

Carla Farsi and Elizabeth Gillaspy Twists over étale groupoids and twisted vector bundles



Introduction
Definitions

Example
Proof of Theorem

Motivation

For a groupoid G with G(0) = M and a twist R over G,

K0(C ∗r (G;R))

classifies D-brane charges in Type IIB string theories over M
[Wit98, BM00] The twist R represents the field strength of the
B-field.

In general [TXLG04] these K -theory classes are given by
G-invariant Fredholm operators on an infinite-dimensional bundle
over M. (The bundle is determined by the twist R.)

Question:

When can K0(C ∗r (G;R)) be understood in terms of vector bundles?

Carla Farsi and Elizabeth Gillaspy Twists over étale groupoids and twisted vector bundles



Introduction
Definitions

Example
Proof of Theorem

Motivation

For a groupoid G with G(0) = M and a twist R over G,

K0(C ∗r (G;R))

classifies D-brane charges in Type IIB string theories over M
[Wit98, BM00] The twist R represents the field strength of the
B-field.

In general [TXLG04] these K -theory classes are given by
G-invariant Fredholm operators on an infinite-dimensional bundle
over M.

(The bundle is determined by the twist R.)

Question:

When can K0(C ∗r (G;R)) be understood in terms of vector bundles?

Carla Farsi and Elizabeth Gillaspy Twists over étale groupoids and twisted vector bundles



Introduction
Definitions

Example
Proof of Theorem

Motivation

For a groupoid G with G(0) = M and a twist R over G,

K0(C ∗r (G;R))

classifies D-brane charges in Type IIB string theories over M
[Wit98, BM00] The twist R represents the field strength of the
B-field.

In general [TXLG04] these K -theory classes are given by
G-invariant Fredholm operators on an infinite-dimensional bundle
over M. (The bundle is determined by the twist R.)

Question:

When can K0(C ∗r (G;R)) be understood in terms of vector bundles?

Carla Farsi and Elizabeth Gillaspy Twists over étale groupoids and twisted vector bundles



Introduction
Definitions

Example
Proof of Theorem

Motivation

For a groupoid G with G(0) = M and a twist R over G,

K0(C ∗r (G;R))

classifies D-brane charges in Type IIB string theories over M
[Wit98, BM00] The twist R represents the field strength of the
B-field.

In general [TXLG04] these K -theory classes are given by
G-invariant Fredholm operators on an infinite-dimensional bundle
over M. (The bundle is determined by the twist R.)

Question:

When can K0(C ∗r (G;R)) be understood in terms of vector bundles?

Carla Farsi and Elizabeth Gillaspy Twists over étale groupoids and twisted vector bundles



Introduction
Definitions

Example
Proof of Theorem

Motivation

Question:

When can K0(C ∗r (G;R)) be understood in terms of vector bundles?

Necessary conditions:

The twist R must represent a torsion element of H2(G,S).

Other more-or-less technical conditions (Theorem 5.28 of
[TXLG04])

There must exist vector bundles over G(0) which are
compatible with the twist R. Twisted vector bundles

[TXLG04] conjectured that their existence is implied by [R]
torsion.
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When do twisted vector bundles exist?

Theorem (Farsi-G, [FG16])

Let G be an étale groupoid and let R be a twist over G, of order n
in H2(G,S). Suppose that the classifying space BG is a compact
CW complex, and that the principal PU(n)-bundle over G(0)
induced by R lifts to a U(n) principal bundle. Then R admits a
twisted vector bundle.
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Étale Groupoids

We want groupoids G to have a locally compact Hausdorff topology
with respect to which multiplication and inversion are continuous.

The unit space G(0) is then always closed in G; we say G is étale if
G(0) ⊆ G is open and r , s are local homeomorphisms.

Examples:

If G is a discrete group, G is étale.

If G is a discrete group, X o G is étale.

A vector bundle is NOT étale.
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Twists over groupoids

Let G be a group. A principal G -bundle over a space X is a locally
trivial G -space E with E/G ∼= X .

A twist over a (topological) groupoid G is a principal T-bundle
p : R → G, such that R is also a groupoid in a compatible way:

r(γ) = r(p(γ)), s(γ) = s(p(γ)), p(γη) = p(γ)p(η) ∀ (γ, η) ∈ R(2)

Example

If c : G(2) → T is a continuous 2-cocycle, then G × T is a twist
over G:

(g , z)(h,w) := (gh, c(g , h)zw).
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Twists over groupoids

Let S denote the trivial sheaf with fibers T.
Twists give rise to elements of H2(G,S);

[Kum88] constructs a
long exact sequence

· · ·H1(G,S)→ H1(G(0),S)→ Tw(G)→ H2(G,S)→ H2(G(0),S) · · ·

If G is nice (proper; or, G(0) zero-dimensional) then

H2(G,S) ∼= H3(G,Z).

Product of twists is given by Baer sum:

R1∗R2 = (R1×GR2)/ ∼, (γ1, zγ2) ∼ (zγ1, γ2) ∀ z ∈ T, γi ∈ Ri

Alternatively, equivalence classes of twists correspond to S1-gerbes
over the stack XG .

Carla Farsi and Elizabeth Gillaspy Twists over étale groupoids and twisted vector bundles



Introduction
Definitions

Example
Proof of Theorem

Twists over groupoids

Let S denote the trivial sheaf with fibers T.
Twists give rise to elements of H2(G,S); [Kum88] constructs a
long exact sequence

· · ·H1(G,S)→ H1(G(0),S)→ Tw(G)→ H2(G,S)→ H2(G(0),S) · · ·

If G is nice (proper; or, G(0) zero-dimensional) then

H2(G,S) ∼= H3(G,Z).

Product of twists is given by Baer sum:

R1∗R2 = (R1×GR2)/ ∼, (γ1, zγ2) ∼ (zγ1, γ2) ∀ z ∈ T, γi ∈ Ri

Alternatively, equivalence classes of twists correspond to S1-gerbes
over the stack XG .

Carla Farsi and Elizabeth Gillaspy Twists over étale groupoids and twisted vector bundles



Introduction
Definitions

Example
Proof of Theorem

Twists over groupoids

Let S denote the trivial sheaf with fibers T.
Twists give rise to elements of H2(G,S); [Kum88] constructs a
long exact sequence

· · ·H1(G,S)→ H1(G(0),S)→ Tw(G)→ H2(G,S)→ H2(G(0),S) · · ·

If G is nice (proper; or, G(0) zero-dimensional) then

H2(G,S) ∼= H3(G,Z).

Product of twists is given by Baer sum:

R1∗R2 = (R1×GR2)/ ∼, (γ1, zγ2) ∼ (zγ1, γ2) ∀ z ∈ T, γi ∈ Ri

Alternatively, equivalence classes of twists correspond to S1-gerbes
over the stack XG .

Carla Farsi and Elizabeth Gillaspy Twists over étale groupoids and twisted vector bundles



Introduction
Definitions

Example
Proof of Theorem

Twists over groupoids

Let S denote the trivial sheaf with fibers T.
Twists give rise to elements of H2(G,S); [Kum88] constructs a
long exact sequence

· · ·H1(G,S)→ H1(G(0),S)→ Tw(G)→ H2(G,S)→ H2(G(0),S) · · ·

If G is nice (proper; or, G(0) zero-dimensional) then

H2(G,S) ∼= H3(G,Z).

Product of twists is given by Baer sum:

R1∗R2 = (R1×GR2)/ ∼, (γ1, zγ2) ∼ (zγ1, γ2) ∀ z ∈ T, γi ∈ Ri

Alternatively, equivalence classes of twists correspond to S1-gerbes
over the stack XG .

Carla Farsi and Elizabeth Gillaspy Twists over étale groupoids and twisted vector bundles



Introduction
Definitions

Example
Proof of Theorem

Twists over groupoids

Let S denote the trivial sheaf with fibers T.
Twists give rise to elements of H2(G,S); [Kum88] constructs a
long exact sequence

· · ·H1(G,S)→ H1(G(0),S)→ Tw(G)→ H2(G,S)→ H2(G(0),S) · · ·

If G is nice (proper; or, G(0) zero-dimensional) then

H2(G,S) ∼= H3(G,Z).

Product of twists is given by Baer sum:

R1∗R2 = (R1×GR2)/ ∼, (γ1, zγ2) ∼ (zγ1, γ2) ∀ z ∈ T, γi ∈ Ri

Alternatively, equivalence classes of twists correspond to S1-gerbes
over the stack XG .

Carla Farsi and Elizabeth Gillaspy Twists over étale groupoids and twisted vector bundles



Introduction
Definitions

Example
Proof of Theorem

Twists over groupoids and their C ∗-algebras

Given a groupoid G with:

a locally compact Hausdorff topology,

a Haar system {λu}u∈G(0) ,
we can make Cc(G) into a ∗-algebra:

f ∗ g(x) :=

∫
f (xy)g(y−1) dλs(x)(y)

f ∗(x) := f (x−1).

If G is étale, each fiber Gu is discrete, so we take λu to be counting
measure.

Carla Farsi and Elizabeth Gillaspy Twists over étale groupoids and twisted vector bundles
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Reduced groupoid C ∗-algebras

To make Cc(G) into C ∗r (G), we represent it on L2(G, ν−1) by left
convolution multiplication.

ν−1(f ) =

∫
G(0)

∫
G
f (γ−1)dλu(γ)dµ(u)

for any quasi-invariant Radon measure µ on G(0).

The representation π : Cc(G)→ B(L2(G, ν−1)) is given by

π(f )ξ(x) = f ∗ ξ(x) =

∫
f (xy)ξ(y−1) dλs(x)(y).

C ∗r (G) = Cc(G) ⊆ B(L2(G, ν−1)).
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Twisted groupoid C ∗-algebras

Given a twist p : R → G,

Cc(G;R) := {f : R → C such that f (z · r) = z · f (r)}.

This is a convolution algebra:

f ∗ g(r) :=

∫
G
f (rs)g(s−1) dλs(r)(p(s)), f ∗(r) := f (r−1)

The reduced twisted C ∗-algebra C ∗r (G;R) arises from representing
Cc(G;R) on L2(G, ν−1).
If R arises from a 2-cocycle c , then C ∗r (G;R) ∼= Cc(G, c):

f ∗c g(γ) =

∫
G
f (γη)g(η−1)c(γη, η−1) dλs(γ)(η).
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Twisted vector bundles

Let R be a twist over G (principal T-bundle over G). A twisted
vector bundle is a vector bundle

π : E →
(
G(0) = R(0)

)
which admits an action of R such that, for all
z ∈ T, γ ∈ R, e ∈ E with π(e) = s(γ),

(z · γ) · e = z(γ · e).

Proposition (TXLG)

If (G,R) admits a twisted vector bundle of rank n, then R
represents a class of order n in H2(G,S).

Proof:
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Classifying space

One way to realize the standard k-simplex ∆k :

∆k = {(t1, . . . , tk) : 0 ≤ t1 ≤ · · · ≤ tk ≤ 1}

BG =

(⊔
k∈N
G(k) ×∆k

)
/ ∼, where

((g1, . . . , gk),(t1, . . . , ti , ti , ti+1, . . . , tk−1))

∼ ((g1, . . . , gigi+1, . . . , gk), (t1, . . . , ti , ti+1, . . . , tk−1)).

Think of groupoid k-tuples as labeling k-simplices: the various
possible partial products label the faces.
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Classifying space

Note:

For all k , the map φk : G(k) → BG given by

φk(g1, . . . , gk) = [(g1, . . . , gk), (0, . . . , 0)]

is continuous, and intertwines with the face/degeneracy maps.

[Wil08] If G = M o G , then BG ∼= M ×G EG , where EG is
any contractible space with a free action of G .
Proof:
k-tuples in G are ((g1, . . . , gk),m).

[((g1, . . . , gk),m), (t1, . . . , tk)] 7→ [(m, (g1, . . . , gk), (t1, . . . , tk))].
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When do twisted vector bundles exist?

Theorem (Farsi-G, [FG16])

Let G be an étale groupoid and let R be a twist over G, of order n
in H2(G,S). Suppose that the classifying space BG is a compact
CW complex, and that the principal PU(n)-bundle over G(0)
induced by R lifts to a U(n) principal bundle. Then R admits a
twisted vector bundle.

When do these hypotheses hold?
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An example

RP2 = {(ρ, θ) : 0 ≤ ρ ≤ 1, 0 ≤ θ < 2π}/ ∼ where (1, θ) ∼ (1, θ+π).

Fix x ∈ R\Q. Set G := M oα Z, where

M = RP2 × S4; α([ρ, θ], z) = ([ρ, θ + ρx ], z).

Since M is compact, BG ∼= M ×Z R is too.

Künneth Theorem calculations tell us
Z/2Z ⊆ Tw(G) ∼= H2(M,Z); moreover, for any n, the obstruction
to lifting a PU(n)-bundle over M to a U(n)-bundle lives in

H2(M,T) ∼= H3(M,Z) ∼= H3(RP2,Z)⊗ H0(S4,Z) = 0.
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Proof sketch

[Moe98] For any étale groupoid G and any abelian G-sheaf A,
H2(G,A) ∼= H2(BG,A);

we want A = S (sheaf of continuous
T-valued functions on G(0))
The Serre-Grothendieck Theorem says that, since [R] has
order n in H2(G,S), [R] gives a principal PU(n)-bundle P̃
over BG.

Pull P̃ back along the inclusion G(0) ⊆ BG to get a principal
PU(n)-bundle P over G(0), which comes with a G-action.

If P lifts (as a bundle) to a U(n)-bundle over G(0), we get an
affiliated vector bundle – this is our twisted vector bundle.
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Proposition (TXLG)

If (G,R) admits a twisted vector bundle of rank n, then R
represents a class of order n in H2(G,S).

Proof.

If you have a rank-n twisted vector bundle E – a map
R → GLn(E ) – composing with the determinant &
normalizing gives a map ψ : R → T such that
ψ(z · ρ) = znψ(ρ), for any ρ ∈ R.

Every element of Rn looks like (z , [γ, . . . , γ]) for some γ ∈ G.
So the map ϕ : Rn → T given by ϕ(z , [γ, . . . , γ]) = zψ(γ, 1)
is well-defined and T-equivariant.

It follows that we have a section σ of the principal bundle
Rn → G which is also a groupoid homomorphism:
σ(γ) = (ψ(γ, 1), [γ, . . . , γ]). Consequently, Rn ∼= G × T is
trivial.

Return
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